本文二维码信息
二维码(扫一下试试看!)
基于BCS-SPL压缩感知算法的纸病图像重构
Paper Disease Image Reconstruction Based on BCS-SPL Algorithm
  
DOI:10.11980/j.issn.0254-508X.2016.12.006
关键词:  压缩感知  BCS-SPL重构算法  纸病图像重构
Key Words:compressed sensing  reconstruction algorithm of BCS-SPL  reconstruction of paper disease image
基金项目:
作者单位
周 强 陕西科技大学电气与信息工程学院,陕西西安,710021 
胡江涛* 陕西科技大学电气与信息工程学院,陕西西安,710021 
王志强 陕西科技大学电气与信息工程学院,陕西西安,710021 
张俊涛 陕西科技大学电气与信息工程学院,陕西西安,710021 
摘要点击次数: 7412
全文下载次数: 1919
摘要:随着造纸工业纸机速度和纸幅宽度的增长,传统的纸病检测处理方式面临着图像数据传输量剧增,纸病检测系统难以实现实时性处理的问题。压缩感知理论能够有效降低数据的采样量,但将压缩感知应用于二维纸病图像时,面临着重构纸病图像质量不高的问题。本研究采用分块压缩感知(BCS)-平滑投影Landweber(SPL)重构算法对纸病图像进行重构,并着重研究了该算法在不同采样率和不同图像分块大小下的重构效果。实验结果表明,在压缩感知框架下,通过BCS-SPL算法重构的低采样率纸病图像具有较高的图像质量,有效降低了纸病图像数据的传输量。
Abstract:With the growing of the speed and the width of paper machine, the traditional paper disease detection faces the problem of transfering a large number of data and the real-time processing. Compressed sensing theory can effectively reduce the amount of data, but the quality of reconstructed paper disease image is not good when it is applied to two-dimensional paper disease image. In this paper, we used the BCS-SPL reconstruction algorithm to reconstruct the paper disease image, focusing on the reconstruction result of the algorithm under different sampling rates and different block sizes. The experimental results showed that in the compressed sensing framework, the low sampling rate paper disease image reconstructed by BCS-SPL algorithm had high image quality, which could effectively reduce the transmission of paper image data.
查看全文  查看/发表评论  下载PDF阅读器