|
二维码(扫一下试试看!) |
稻草秸秆纤维微米化及其离子交联制备疏水纤维素膜的研究 |
Study on Fibrillation of Rice Straw Fibers and Cross-linking with Ions to Prepare Hydrophobic Cellulose Films |
投稿时间:2024-02-23 |
DOI:10.11980/j.issn.0254-508X.2024.05.001 |
关键词: 纤维素微细纤维 Fe3+离子交联 疏水改性 接触角 拉伸应力 |
Key Words:cellulose microfibers Fe3+ cross-linking hydrophobic modification contact angle tensile stress |
基金项目:国家重点研究计划国际合作项目(2021YFE0104500);国家自然科学基金(22078114)。 |
|
摘要点击次数: 1088 |
全文下载次数: 753 |
摘要:农业废弃物稻草秸秆经NaOH预处理、TEMPO氧化和机械处理,再经真空抽滤成膜并与Fe3+交联,制备了具有疏水性的纤维素微细纤维(CMF)膜。通过FESEM、ATR-FT-IR、Zeta电位测试、XRD、拉伸测试、接触角和吸水率等表征,分析了CMF膜的结构和性能。结果表明,CMF充分与Fe3+交联,有效提高了CMF膜的疏水性。CMF膜的疏水性受离子交联时间和Fe3+浓度的影响,其水接触角最高可达134.15°;该膜在水中浸泡24 h后吸水率为50%,明显低于未交联CMF膜(210%)。Fe3+交联的CMF膜还具有良好的湿拉伸力,达37.5 MPa。 |
Abstract:Cellulose microfiber (CMF) film with hydrophobicity was prepared from agricultural waste rice straw by caustic soda pulping, TEMPO oxidation and mechanical treatment, followed by vacuum filtration and cross-linking with Fe3+. The structure and properties were analyzed by FESEM, ATR-FTI-IR, Zeta potential test, XRD, tensile test, contact angle and water absorption, etc. The results showed that the CMF was sufficiently cross-linked with Fe3+ to efficiently improve the hydrophobicity of CMF film. The water contact angle of CMF film was affected by the time of cross-linking and the concentration of Fe3+, which reached up to 134.15°. The water absorption of the film immersed in water after 24 h was 50%, which was significantly lower than that of the uncross-linked CMF film (210%). The ionically cross-linked CMF film also had good wet tensile stress of 37.5 MPa. |
查看全文 查看/发表评论 下载PDF阅读器 |