Improving Hydrogen Peroxide Bleaching Efficiency of Bamboo Chemi-mechanical Pulp in Alcohol Aqueous Medium

LIANG Fangmin1,2 FANG Guigan1,2,∗ JIAO Jian1,2 DENG Yongjun1,2 XIE Cunxin1,2 HAN Shanning1,2 LI Hongbin1,2 TIAN Qingwen1,2 ZHU Beiping1,2

1. Institute of Chemical Industry of Forest Products, National Engineering Lab for Biomass Chemical Utilization, Key Lab of Forest Chemical Engineering, Key Lab of Biomass Energy and Material, Nanjing, Jiangsu Province, 210042; 2. Collaborative Innovation Center for High Efficiency Processing and Utilization of Forestry Resources, Nanjing Forestry University, Nanjing, Jiangsu Province, 210037

(∗ E-mail: fangguigan@icifp.cn)

Abstract: To improve hydrogen peroxide bleaching efficiency and break “brightness ceiling” of bamboo chemi-mechanical pulp (CMP), tests of an improved hydrogen peroxide bleaching procedure for bamboo chemi-mechanical pulps were performed with inclusion of ethanol in the bleaching medium (IEBM). Compared with a conventional bleaching method, the CMP was bleached to brightness of 69.2% when the dosage of H₂O₂ was 15%, with the IEBM method the CMP was bleached to the same brightness when the H₂O₂ dosage was 9%, bleaching with the IEBM method reduced H₂O₂ consumption by approximately 40%. At the usage level of 15% H₂O₂, the CMP could be bleached to the brightness of 77.4% with the IEBM method, increased by 8.2 percentage points compared with the conventional method. Further more, the bleached brightness differences between IEBM and conventional method increased dosage level of H₂O₂ increased, it could reach up to 10.3 percentage points, when the CMP was bleached to the brightness of 81.7% at the dosage of 25% H₂O₂ increased. UV-Vis spectrophotometry showed that, for the same brightness, bleached pulps with IEBM method had better bleaching stability than the bleached pulps of conventional method, the main reason was the improved destruction of chromatic structures of the α-carbonyl group conjugated with benzene ring and γ-aldehyde group connected with benzene ring that absorb light in the region of 370 ~ 385 nm, and also the improved destruction of quinoid structure that absorb light in the region of 400 ~ 500 nm.

Key words: bamboo; chemo-mechanical pulp; hydrogen peroxide; alcohol; bleaching
机械浆因具有成本低、得率高、污染小等优点[1]，越来越受到市场的关注。适用范围也从配抄新闻纸逐渐扩大到配抄高附加值的印刷书写纸等领域，因此对其强度和白度的要求也相应提高[2]。使用竹材制备漂白化学机械浆，可以合理开发利用非木材纤维资源，节约木材纤维资源。然而，由于竹材自身物理化学组成特殊，现有主流漂白工艺无法将竹材化机浆漂白至74%及以上的高白度[3]，从而不能满足配抄高附加值产品的需要。

将漂白选择性定义为纸浆得率的损失与纸浆白度增加的比值，漂白过程中纸浆得率的损失主要来自于从纸浆中木素的溶解除去，而木素难溶于水，使漂白选择性差。漂白过程中浆的白度增加一般具有如下特征：在合适的用碱量条件下，随着H₂O₂用量的增加，开始浆料白度迅速增加，H₂O₂用量继续增加，白度增加缓慢，达到一个平台之后，白度不再随H₂O₂用量的增加而增加，这一平台被称作“白度增限”[4]。白度缓慢增长阶段或者平台阶段具有较低的漂白效率，此阶段消耗较高的化学品用量仅能获得较低的白度增加值，白度增限的范围取决于纸浆中木素种类及发色基团。已有学者通过一些方法来提高漂白效率，突破“白度增限”，其中有多段或分段H₂O₂漂白、H₂O₂组合其他氧化剂漂白、H₂O₂活化漂白等。

进行漂白。漂白条件为：浆浓 10%，漂白温度 95℃，
漂白时间 90 min，Na₂SiO₃ 用量 2%，DTPA 用量
0.5%，H₂O₂ 用量 9%～15%，NaOH 用量 8%～
13%。漂白完成后挤出余液，测定 H₂O₂ 残余量及
pH 值。漂后浆料进行酸化、洗涤，经浓缩后抄片测
定白度。
1.4 漂白前预处理对漂白浆白度的影响
准确称取 1.1 中准备的竹材化机浆原料 3 份，分
别标记为 a、b、c；其中样品 a：未经任何预处理；
样品 b：经水预处理，条件为：浆浓 10%，温度
95℃，时间 90 min；样品 c：乙醇-水（质量比 1:1）
预处理，条件为：浆浓 10%，温度 95℃，时间 90 min。
样品 b、c 经预处理后，洗净浓缩冷冻备用。未经
预处理的样品 a 及预处理后的样品 b、c 按照 1.3
的实验方法进行漂白，此处理预处理样品仅作检验水
预处理及乙醇-水预处理对最终漂白浆白度的影响。
1.5 纸浆的 UV-Vis 光谱分析
使用紫外可见分光光度计对未漂浆及漂浆直接
扫描测定吸光值（19）。扫描步长 1 nm，扫描范围 200
～700 nm。采用 BaSO₄ 标准物进行背景校准。
1.6 返黄实验
按照 GB/T 26459—2011 进行返黄实验测试，使
用 20 W 泛光灯（Y62-1 型），紫外光波长为 340 nm，
距离紫外光灯 20 cm 处，将漂白浆片平行放在托盘
上，根据条件后取出，在避光条件下平衡 4 h 后检测
白度。纸浆返黄（PC）值的计算见公式（1），其中 Rₚ
为 457 nm 处测定的纸浆白度。

\[
PC = \left(1 - \frac{R}{R_0}\right)^2 \times 100
\]

2 结果与讨论
2.1 乙醇比例对漂白浆白度的影响
图 2 所示为乙醇比例对漂白浆白度的影响，漂白
条件为：漂白时间 90 min，漂白温度 95℃，浆浓
10%，H₂O₂ 用量 12%，NaOH 用量 9%，Na₂SiO₃ 用量
2%，DTPA 用量 0.5%。从图 2 可以看出，以水溶液
为介质漂白时，浆料白度低下 66.5%；相同 H₂O₂ 用量
条件下，随着乙醇比例的增加，浆料白度随之增加。
当乙醇比例达到总介质的 50%（质量比）时，白
度提高 7.3 个百分点，继续增加乙醇比例，白度增加
缓慢，乙醇的比例达到总介质的 70%（质量比）时，白
度提高为 7.7 个百分点，此结果与 Pan [12] 在使用乙
醇-水介质漂白杨木化机浆时得到的趋势一致。为节
约成本，选择质量分数为 50% 的乙醇做后续研究。
2.2 不同介质对漂白效率及漂白浆白度的影响
为进一步验证乙醇-水介质 H₂O₂ 漂白（与常规水
介质漂白相比）可以提高漂白效率及漂白浆白度，分
别研究了不同 H₂O₂ 用量下乙醇-水介质漂白的白度
及漂白浆白度，漂白条件及漂后残液分析见表 1
（其中 NaOH 用量是通过 NaOH 优化获得的最佳用
量），其他漂白条件为：漂白时间 90 min，漂白温度
95℃，浆浓 10%，乙醇-水介质中乙醇比例 50%（质
量比），Na₂SiO₃ 用量 2%，DTPA 用量 0.5%。H₂O₂
漂白结束时，浆中应残留一定量的 H₂O₂，否则会发
生“碱性返黄”[4]。从表 1 可以看出，与相同 H₂O₂
用量漂白后，乙醇-水介质的 H₂O₂ 残余量高于水介质
漂白残液，有利于抑制“碱性返黄”的发生，提高
漂白浆的白度稳定性。水介质漂白后残液最终 pH 值
在 9.5 左右，与文献中基本一致 [4,30]，而乙醇-水介
质漂白后残液的最终 pH 值在 10.5 左右。

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H₂O₂ 残余量</td>
<td>pH 值</td>
<td>pH 值</td>
</tr>
<tr>
<td></td>
<td>H₂O₂ 用量</td>
<td>NaOH 用量</td>
<td>/g·L⁻¹</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>0.14</td>
<td>9.47</td>
<td>0.34</td>
<td>10.52</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>8</td>
<td>0.40</td>
<td>9.64</td>
<td>0.79</td>
<td>10.55</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>11</td>
<td>0.45</td>
<td>9.48</td>
<td>1.48</td>
<td>10.51</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>12</td>
<td>0.57</td>
<td>9.76</td>
<td>2.44</td>
<td>10.56</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>13</td>
<td>1.25</td>
<td>9.70</td>
<td>3.46</td>
<td>10.47</td>
<td></td>
</tr>
</tbody>
</table>

图 3 为不同介质对漂白效率（以单位漂白剂用量
的白度增加值来表示） [19] 及漂白浆白度的影响。从图
3 可以看出，在水介质漂白过程中，随着 H₂O₂ 用量
的增加，浆料白度随之增加。当 H₂O₂ 用量超过 15%
时，浆料白度增加缓慢，此时漂白效率下降，仅有
1.5%。当 H₂O₂ 用量继续增加至 20% 时，白度为

China Pulp & Paper Vol. 38, No. 5, 2019
70.9%，继续增加H₂O₂用量至25%时，度变基本不变，为71.4%。醇-水介质漂白过程中，度与H₂O₂用量的关系与水介质漂白相似，虽然醇-水介质漂白时也存在“度增减”，但H₂O₂用量9%时度值可达到69.7%，已经接近水介质漂白时最高度，H₂O₂用量15%漂白时，度值为77.7%，足以满足部分纸种度的度。随着H₂O₂用量的增加，醇-水介质漂白度与水介质漂白度的差值随之大幅增加。如在H₂O₂用量9%条件下，醇-水介质比水介质漂白度提高4.9个百分点，H₂O₂用量15%时，醇-水介质比水介质漂白度提高8.2个百分点；H₂O₂用量25%时，醇-水介质比水介质漂白度提高10.3个百分点。总之，与水介质漂白相比，醇-水介质漂白时可以提高漂白效率，增加漂白度。

2.3 漂白预处理对漂白度的影响

研究结果表明，经醇-乙醇(体积比为2:1)抽提48h后的竹材纸化机浆漂白度可以提高8.9%（6%H₂O₂、3%NaOH）。为了探究本研究中乙醇的作用是否与苯-醇的抽提作用相似以达到提高漂白效率的效果，本实验对竹材机浆进行预处理再进行漂白，结果见表2。由表2可以看出，经过水介质与醇-水介质进行预处理后，未漂白度分别提高1.7个百分点、2.7个百分点。H₂O₂用量9%水介质漂白时，比较未处理和水预处理可以发现，水预处理后漂白度可以提高0.3个百分点，比较未处理和醇-水预处理可以发现，醇-水预处理后漂白度可以提高1.1个百分点。H₂O₂用量9%醇-水介质漂白时，比较未处理和水预处理可以发现水预处理后漂白度可以提高0.5个百分点，比较未处理和醇-水预处理可以发现，醇-水预处理后漂白度可以提高1.1个百分点；H₂O₂用量12%漂白与H₂O₂用量9%漂白结果基本相似，水预处理后，漂白度增加0.2~0.3个百分点，醇-水预处理后，漂白度增加0.6~1.6个百分点；未经预处理的经醇-水介质漂白与水介质漂白相比，H₂O₂用量9%时，度提高4.8个百分点，H₂O₂用量12%时，度提高6.9个百分点，因此醇-水介质漂白并不是通过醇的抽提作用来提高漂白度，需要对木素进行进一步的分析以探索其反应机理。

2.4 度稳定性

竹材化机浆由于制浆得率高，浆中含有大量残余木素，不但难以漂白至高度，而且极易返黄。据报道[21]，纸浆的漂白程度是浆料木素结构中的特有结构，例如酚型结构、β-O-4结构、α-羟基结构等被紫外光诱发，经过不稳定的游离基过渡态结构，最终形成高度共轭的发色结构。这种高度共轭的发色结构中75%左右为邻醌结构。醌型结构的光电吸收系数较α-苯基大得多[20]，它在可见光区域对光的吸收占全部吸收的55%~60%。碱性条件下的H₂O₂漂白主要是改变木素结构中的发色基团，漂白体系中存在反应物也与酚型木素自动氧化反应，使其分解溶解。[24]，因此，漂白液的稳定性和还原性漂白效果的一个重要指标。醇-水介质漂白的稳定性结果见图4及图5，返黄试验用漂白纸浆的条件见表3。

已有研究[20]表明，随着纸浆度的增加，返黄值降低，度稳定性提高。由图4可以看出，醇-水介质进行H₂O₂漂白时具有相同的结果。光照时间加重，漂白度增加，度稳定性提高。
不同介质漂白浆的白度稳定性比较

<table>
<thead>
<tr>
<th>编号</th>
<th>介质</th>
<th>H₂O₂用量/%</th>
<th>NaOH用量/%</th>
<th>白度/得率/%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>水</td>
<td>15</td>
<td>11</td>
<td>69.2/83.2</td>
</tr>
<tr>
<td>2</td>
<td>乙醇-水</td>
<td>9</td>
<td>8</td>
<td>69.2/83.4</td>
</tr>
<tr>
<td>3</td>
<td>水</td>
<td>25</td>
<td>13</td>
<td>71.4</td>
</tr>
<tr>
<td>4</td>
<td>乙醇-水</td>
<td>10</td>
<td>8</td>
<td>71.4</td>
</tr>
<tr>
<td>5</td>
<td>乙醇-水</td>
<td>15</td>
<td>11</td>
<td>77.4/78.8</td>
</tr>
<tr>
<td>6</td>
<td>乙醇-水</td>
<td>25</td>
<td>13</td>
<td>81.7</td>
</tr>
</tbody>
</table>

注：乙醇和水的质量比为1:1。

较短时，光氧化反应还未完全进行，随纸浆白度的增加返黄值下降不明显；当光照时间增加至3.5 h后，光氧化反应加强，随着纸浆白度的增加，返黄值下降速度加快。从表3可以看出，由于竹材半纤维的漂白性能较差，漂白至相同白度69.2%时，乙醇-水介质漂白与水介质漂白得率基本相同样为83%左右；乙醇-水介质漂白至白度77.4%，得率继续下降至79%左右，说明较高H₂O₂用量漂白时，部分木素与过量的漂白药液反应溶出，木素含量降低，能发生返黄反应的自由基含量减少，因此纸浆返黄值降低，白度稳定性提高。为了更好地分析乙醇-水介质H₂O₂漂白的稳定性，选取相同白度的水介质及乙醇-水介质漂白浆进行返黄实验，由图5结果可知，在同一白度下，随光照时间的增加，返黄值下降，不同白度纸浆的返黄值随光照时间的变化趋势几乎一致。相同白度的漂白浆，乙醇-水介质漂白的返黄值低于水介质的返黄值低，相同光照时间时，漂白浆白度由69.0%左右增加至72.0%左右时，乙醇-水介质返黄值降低的程度大于水介质，也就是漂白至相同白度时，乙醇-水介质漂白可以氧化溶出更多的木素发色基团，获得的纸浆返黄值低，白度稳定性好。

2.5 UV-Vis光谱分析

高得率浆中具有苯环结构的木素对特定波长的紫外光有强烈的吸收作用，而纤维素半纤维素对紫外光几乎没有吸收作用。基于此特征，采用紫外可见吸收光谱研究漂白前木素发色基团的结构变化，可以避免木素提纯过程中化学结构变化带来的误差。木素中各种发色基团在UV-Vis波长范围内的吸收峰位置见图6，其中370~385 nm是木素结构中与苯环共轭的α-烯基结构和与苯环连接的γ-酮基结构，400~500 nm之间是木素结构中邻醌和对醌结构。漂白条件及漂白浆白度见表3。

图6：木素发色基团在紫外可见光区域吸收峰位置

未漂浆与各漂白浆的吸光度见图7。从图7可以看出，最强吸收峰发生在280~300 nm，这是木素苯环本身的吸收峰。纸浆白度在457 nm处进行测试，此处吸光度反应了纸浆的白度。UV-Vis差谱（以未漂竹浆为基准）能更好地反映漂白方法对木素结构变化的影响。图8中a、b 两条曲线代表具有相同白度（69.2%）的水介质漂白浆、乙醇-水介质漂白浆分别与未漂浆的吸光度差值，它们在457 nm处与未漂浆的吸光度差值基本相同，这与它们白度相同的结果一致，但375~440 nm之间，乙醇-水介质漂白浆与未漂浆的吸光度差值比水介质漂白浆略高，说明乙醇-水介质漂白时对375 nm处的醛基、羰基结构以及425 nm处的醌型结构漂白作用比水介质漂白时强，这可能是乙醇-水介质漂白浆的白度稳定性较水介质漂白浆略高的原因。漂白至相同白度69.2%时，乙
醇-水介质漂白比水介质漂白时可以节省 40% 的 H₂O₂ 用量（见表 3），同时对木素的一些发色基团的破坏作用略强，说明在乙醇-水介质漂白过程中，提高了 H₂O₂ 对木素的选择性。以 b 曲线为基准，比较 b、c、d 三条曲线可以看出，370 nm 处吸收峰仍然存在，说明与水介质漂白相比，乙醇-水介质 H₂O₂ 漂白可对木素结构中与苯环共轭的 α-羰基结构和与苯环连接的 γ-羰基结构有着持续的破坏作用；在 400 ~ 500 nm 处，吸光度差值随 H₂O₂ 的增加不断增加，说明乙醇-水介质漂白过程中增加 H₂O₂ 用量对醌型结构有持续的破坏作用。当 H₂O₂ 用量由 15% 增到 25% 时，对 457 nm 处产生吸收的一些醌型结构的破坏作用减弱，漂白效率降低，这是 H₂O₂ 漂白具有“白度增限”的主要原因。

3 结 论

本实验使用乙醇-水溶液作为竹材化机浆过氧化氢 (H₂O₂) 漂白过程中的介质来提高 H₂O₂ 漂白白度、漂白效率及白度稳定性。

3.1 漂白至相同白度 69.2% 时，水介质漂白需要用量 15% H₂O₂，而乙醇-水介质仅需要用量 9% 的 H₂O₂，相比水介质漂白 H₂O₂ 用量节约 40%。

3.2 乙醇-水介质 H₂O₂ 漂白时，与传统水介质漂白相比，可以提高 H₂O₂ 的漂白效率，突破水介质漂白时的“白度增限”（白度 71%）。H₂O₂ 用量 15% 时，水介质仅能漂白至白度 69.2%，而乙醇-水介质可以漂白至白度 77.4%，比水介质漂白提高 8.2 个百分点。乙醇-水介质漂白时，H₂O₂ 用量 25% 时可以漂白至白度 81.7%，比水介质漂白（白度 71.4%）提高 10.3 个百分点。

3.3 漂白至相同目标白度，乙醇-水介质漂白时，可氧化溶出更多的木素发色基团，获得的纸浆返黄值低，白度稳定性好。

3.4 紫外可见光吸收光谱 (UV-Vis) 分析显示，乙醇-水介质漂白时，可以提高 H₂O₂ 对木素的选择性，持续对 457 nm 处的醌型结构的破坏是突破水介质漂白增限的主要原因。

参考文献

第26届生活用纸国际科技展览会圆满落幕

由中国轻工集团所属中国制浆造纸研究院有限公司主办，中国制浆造纸研究院有限公司和中国造纸协会生活用纸专业委员会联合承办，福建恒安集团有限公司、湖北丝宝股份有限公司、四川环龙新材料有限公司、上海泰盛制浆（集团）有限公司、佛山市宝索机械制造有限公司、江西欧克科技有限公司、美国棉花公司协办的第26届生活用纸国际科技展览会（2019年生活用纸年会暨妇婴童卫生用品国际论坛）于2019年4月17～19日在武汉国际博览中心成功举办。

本届展览会展出面积为8万㎡，来自全球50多个国家和地区的852家业内参展商，3.5万名专业观众再聚江城，共赴这一年一度的行业之约。

展会期间，为表彰行业开拓者对生活用纸和卫生用品行业蓬勃发展做出的杰出贡献，及2018年度行业领军企业对行业健康发展树立的标杆作用，CIPDEx2019在4月16日举办的2019年武汉生活用纸年会贵宾欢迎晚宴暨欧克杯客答谢晚宴上特别设立了“行业奠基人”奖及2018年度行业十强企业颁奖环节，表彰对行业发展做出贡献的个人和企业。

CIPDEx2019展会分为生活用纸、卫生用品、原辅材料、设备器材四大展区，并在此基础上按照业务类别细分为11个分区，覆盖生活用纸、卫生用品行业上下游全产业链。通过CIPDEx2019，业内人士对生活用纸和卫生用品整个产业链的最新发展情况有了充分的了解，提供一站式观展体验。

生活用纸年会的一大重头戏——FOCUS生活用纸和卫生用品国际论坛于4月15～16日在武汉洲际酒店国际会议中心举办，吸引了800名业内专业人士参会，再创参会人数新高。本次国际论坛共设立生活用纸、卫生用品、市场营销三大专题会场，共计举办30场主旨演讲及4场互动论坛。在坚持一贯专业性、实用性的高品质基础上，还进行了品牌和内容升级，对“焦”生活用纸和卫生用品两大行业，集“聚”全球业内专家，“聚”焦关注话题，洞察、解析、对话、研讨，为国内外企业提供开放共享、协作共赢的专业交流平台。

国际论坛现场座无虚席，讨论、交流氛围热烈，参会听众对本次国际论坛的主题策划、演讲内容甄选及互动论坛设置给予了高度评价。