摘要
本文综述了近年来国内外纤维素基功能材料用于吸附与检测气体方面的最新研究进展,重点阐述了胺基化改性、复合型以及荧光型纤维素基气体吸附与检测材料的制备及应用研究,最后总结了该领域目前存在的问题和未来的发展方向。
随着社会的进步和生活水平的提高,人们对空气质量的关注度越来越
目前应用较多的某些无机吸附材
纤维素经化学改性后可直接用于气体吸附,同时将纤维素与某些光子晶体、导电聚合物、荧光染料或碳量子点(Carbon dots,CDs)结合可用于选择性检测与吸附气体。吸附机理包括物理吸
纤维素基功能材料往往需经化学改性,其改
浸渍法是将有机胺等活性组分通过浸渍,以范德华力的形式负载到载体上的方法。优点在于操作比较简单、经济、能耗低、易于控制,可将有机胺一次性大量的负载到载体孔道内,从而获得较好的吸附能力,适用于多孔材料胺基化改性的大批量生
接枝法是通过化学反应使改性剂结合到载体孔道表面的方法。优点在于两种物质通过化学键方式结
制备一个吸附性能良好的纤维素基吸附材料不仅取决于制备方法,选择合适的改性剂也是至关重要的因素。部分有机胺的物理性质如
以改性剂N-(2-氨基乙基)(3-氨基丙基)甲基二甲氧基硅烷(APS)与纤维素纳米纤丝(CNF)的反应为例(反应机理见

图1 APS改性CNF气凝胶机
Fig. 1 Mechanism of APS modified CNF aeroge
复合材料是指将不同性质的材料组分优化组合而成的新材料,它不仅保持各组分材料的互补和关联,而且可以获得单一组分材料所不能达到的综合性能。因此将其他种类的材料与纤维素复合成某种新型功能材
Khamkeaw等

图2 纤维素-沸石复合吸附材料的制备流程
Fig. 2 Preparation process of cellulose zeolite composite adsorbent
注 (a)细菌纤维素基复合型ZSM-5沸石的制备流
ZHAO等

图3 纤维素复合吸附材料的制备流程
Fig. 3 Preparation process of cellulose composite adsorbent
注 (a)多孔芳香骨架材料/CNF复合气凝胶吸附材料制备流程
随着人们对基于光子晶体的光学传感器研究逐渐深入,将光子晶体与一些气体敏感材料制备了某些对气体有响应的光学传感材
近年来,导电聚合物材料如聚吡咯(PPy)、聚噻吩(PTh)和聚苯胺(PANI)因其低成本、高导电性、环境友好及易于在室温条件下操作而在化学传感应用中受到关
目前,兼具吸附与检测气体的方法中光学传感
研究表明基于仅一种发光体的荧光强度变化的传统光学气体传感器,其测定精度易受发光体浓度、仪器、特别是外部环境(例如温度、湿度等)的影响。此外,对于一种发光体,在大多数情况下荧光强度只有微小的变化,人眼对荧光亮度变化识别有限可能会增加实验误差,甚至导致裸眼检测模式的失败。比率荧光系统显示出作为理想光学传感器的巨大潜力,对于这种传感器,通常有2种发光体,一种作为分析物的指示剂,另一种作为内部参照物。基于强大的抗干扰能力,内置基准电压源的自动校准效果可显著提高检测精度。更重要的是,通过合理选择不同发光体而建立的复杂比率测定系统,使用肉眼,即视觉检测或监测,也能通过不同的荧光颜色变化精确地确定分析物。
研究人员将异硫氰酸荧光素(FITC)和原卟啉九(PpIX)分别与CA共价连接,获得了发绿光和发红光的纤维素基固体荧光材料,化学键的结合更有效地实现了分子尺度上的均匀分布并减轻荧光物质的聚集行

图4 荧光型纤维素基吸附材料的制备
Fig. 4 Preparation of fluorescent cellulose based adsorbent
注 (a)纤维素基比率荧光材料的制
除荧光染料外,碳量子点(CDs)作为一种新型荧光纳米粒子,不仅具有传统半导体量子点的光学性能,且具有毒性低、来源广泛、生物相容性好、成本低等优点。作为一种新型的荧光材料,它比传统荧光染料的摩尔消光系数高出几十倍,且荧光性能稳
工业废气大量排放,化石燃料过度燃烧,导致大气中CO2浓度增加,引起温室效应、全球气候变暖等各种环境问题出现。CO2不仅是温室气体,也是一种酸性气体,过高的浓度会导致海水酸化,致使海洋中珊瑚及浮游生物的减
氨基修
Liu等
ZHANG等
Wu等
同时研究人员发现,目前对CO2有高吸附性能的纤维素基气凝胶大多采用液相法制备,这导致了改性剂流失的问题。Zh
为制备更加轻质的吸附材料,Wei等
复合材料具有可设计性和互补效应,可提高材料的综合性能。张辉等
朴春

图5 纤维素复合吸附材料光谱及机理图
Fig. 5 Spectrum and mechanism of cellulose composite adsorption material
注 (a)羧甲基纤维素光子晶体复合膜反射光谱
徐敏琪等
荧光检测技术具有使用方便、检测灵敏度高、选择性好等优点,能及时检测到环境微量的气体分子。将改性纤维素吸附剂与荧光物质相结合,可以在发挥纤维素材料优越吸附性能的同时配合荧光物质的优良检测性能,从而可以达到同时吸附和检测环境中特定气体的目的。为了应对食品安全问题的爆炸性增长,特别是在发展中国家,实现简单、快速、低成本和准确的食品安全监测系统变得更加紧迫和不可或
Ji

图6 荧光型纳米纤维素膜用于检测食品的示意图
Fig. 6 Schematic diagram of fluorescent nanofiber membrane for food detection
注 (a)纤维素基荧光材料可见光和365 nm紫外光下具有不同材料形式的红色初始荧
与传统的无机吸附材料相比,纤维素基吸附材料有着来源丰富、表面活性位点多,易被改性、绿色环保等独特优势,是吸附材料的优良基质。但对纤维素进行官能团改性处理会提高成本,使制备工艺变得繁琐,因此今后应探索简化的制备工艺,尽可能降低生产成本。另外也需兼顾提高气体吸附与检测材料的机械性能,使其在脱附过程中可以承受一定的外力或升温带来的影响。目前纤维素基功能材料多制备成膜、水凝胶或气凝胶,虽然三维网络结构提高了吸附质在吸附剂中的分子间扩散效率,但该材料的吸附效率仍有可提高的空间,因此实现快速和完全的吸附也是未来的研究方向之一。在传感检测方面,目前已实现裸眼即视的检测效果,但检测的极限值仍需探索,同时制备工艺的简化和改进也是未来需要关注的方向。随着对纤维素基吸附材料的深入研究,该材料将会有更大的发展潜力和应用前景。
参考文献
Kim H, Choe S A, Kim O J, et al. Outdoor air pollution and diminished ovarian reserve among infertile Korean women[J]. Environmental Health and Preventive Medicine, DOI: 10.1186/s12199-021-00942-4. [百度学术]
Yoav, Broza, Hossam, et al. Nanomaterial-based sensors for detection of disease by volatile organic compounds[J]. Nanomedicine, 2013, 8(5): 785-806. [百度学术]
Jinwei Q , Bingyou J , Mingyun T , et al. Visual Simulation and Case Inversion of Gas Explosion in Underground Mine[J]. Advances in Civil Engineering, 2021, 2021(8): 1-15. [百度学术]
Mladenović N, Kljajević L, Nenadović S, et al. The Applications of New Inorganic Polymer for Adsorption Cadmium from Waste Water[J]. Journal of Inorganic & Organometallic Polymers & Materials 2020, 30(2):554-563. [百度学术]
Yu X, Cui W, Zhang F, et al. Removal of iodine from the salt water used for caustic soda production by ion-exchange resin adsorption[J]. Desalination, 2019, 458:76-83. [百度学术]
Cheng H, Li L J, Wang B J, et al. Multifaceted applications of cellulosic porous materials in environment, energy, and health[J]. Progress in Polymer Science, DOI: 10.1016/j.progpolymsci. 2020.101253. [百度学术]
Li J R, Li H, Yuan Z, et al. Role of sulfonation in lignin-based material for adsorption removal of cationic dyes[J]. International Journal of Biological Macromolecules, 2019, 135:1171-1181. [百度学术]
Liu Y, Wu Z, Chen X, et al. A hierarchical adsorption material by incorporating mesoporous carbon into macroporous chitosan membranes[J]. Journal of Materials Chemistry, DOI: 10.1039/c2jm31581e. [百度学术]
C H D A B, A W L, B M Z, et al. Cellulose nanocrystals and cellulose nanofibrils based hydrogels for biomedical applications science direct[J].Carbohydrate Polymers, 2019, 209: 130-144. [百度学术]
付时雨. 纤维素的研究进展[J]. 中国造纸, 2019, 38(6):54-64. [百度学术]
FU S Y. Research Progress of Cellulose [J]. China Pulp & Paper, 2019, 38 (6): 54-64 [百度学术]
Khansary M A, Aroon M A, Hirazian S. Physical adsorption of CO2 in biomass at atmospheric pressure and ambient temperature[J]. Environmental Chemistry Letters, 2020, 18: 1423-1431. [百度学术]
Tighadouini S, Radi S, Garcia Y. Selective chemical adsorption of Cd(II) on silica covalently decorated with a β-ketoenol-thiophene-furan receptor[J]. Molecular Systems Design & Engineering, DOI: 10.1039/C9ME00140A. [百度学术]
Rezamahdipoor H, RoueinHalladj, Babakhani E G, et al. Synthesis, characterization, and CO2 adsorption properties of metal organic framework Fe-BDC[J]. RSC Advances, 2021, 11: 5192-5203. [百度学术]
吴青泽. 基于聚丙烯酰胺的CO2吸附复合材料的制备及其性能研究[D]. 北京:北京化工大学, 2020. [百度学术]
WU Q Z. Preparation and properties of CO2 adsorption composite based on polyacrylamide [D].Beijing: Beijing University of Chemical Technology, 2020. [百度学术]
Chen L, McBranch D W, Wang H L, et al. Highly sensitive biological and chemical sensors based on reversible fluorescence quenching in a conjugated polymer[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(22):12287-12292. [百度学术]
冉强三, 康建伟, 冯萃敏, 等. 荧光检测技术在水质检测中的应用[J]. 应用化工, 2020, 49(7):1780-1785. [百度学术]
RAN Q S, KANG J W, FENG C M, et al. Application of fluorescence detection technology in water quality detection [J]. Applied Chemical Industry, 2020, 49 (7): 1780-1785. [百度学术]
Alain, Dufresne. Preparation and Properties of Cellulose Nanomaterials[J]. Paper and Biomaterials, 2020,5(3):1-13. [百度学术]
WANG Y Y, HAI S. Modification of Cellulose by Hydrophobic Long-chain Molecules: Advances and Prospects[J]. Paper and Biomaterials, 2020,5(3):31-43. [百度学术]
GUO Y, LUO L, ZHENG Y, et al. Optimization of CO2 Adsorption on Solid-supported Amines and Thermal Regeneration Mode Comparison[J]. ACS Omega, 2020, 5(17): 9641–9648. [百度学术]
YUAN Y, WEI J, GENG L, et al. An amine-bifunctionalization strategy with Beta/KIT-6 composite as a support for CO2 adsorbent preparation[J]. RSC Advances, 2020, 10(56): 34187-34196. [百度学术]
李 勇, 李 磊, 闻 霞, 等. 二次嫁接法制备氨基修饰的硅基二氧化碳吸附剂 [J].燃料化学学报, 2013, 41 (9):1122-1128. [百度学术]
LI Y, LI L, WEN X, et al. Preparation of amino modified silica based carbon dioxide adsorbent by secondary grafting [J]. Journal of Fuel Chemistry, 2013, 41 (9): 1122-1128. [百度学术]
梅立斌. 二氧化碳吸附材料的制备及其吸附机理研究[D]. 青岛:青岛科技大学, 2018. [百度学术]
MEI L B. Preparation and adsorption mechanism of carbon dioxide adsorption materials [D]. Qingdao: Qingdao University of Science and Technology, 2018. [百度学术]
张天蒙,张 洋,刘 双,等.氨基改性纳米纤维素气凝胶的制备及吸附性能研究[J].西南林业大学学报(自然科学), 2018, 38(3): 181-187. [百度学术]
ZHANG T M, ZHANG Y, LIU S, et al. Preparation and adsorption properties of amino modified nano cellulose aerogels [J]. Journal of Southwest Forestry University (Natural Science), 2018, 38(3): 181-187. [百度学术]
SUN B, KONG F, ZHANG M, et al. Cellulose-based Antimicrobial Composites and Applications: A Brief Review[J]. Paper and Biomaterials, 2019,4(4): 1-14. [百度学术]
陈 健,贾峰峰,谢 璠,等.芳纶纳米纤维及其复合材料研究进展[J].中国造纸学报, 2020, 35(3): 80-87. [百度学术]
CHEN J, JIA F F, XIE F, et al. Progress in the Research of Aramid Nanofibers and Their Composites [J]. Transactions of China Pulp and Paper, 2020, 35(3): 80-87. [百度学术]
Li K, Yu L, Cai J, et al. Removal of dyes from aqueous solution using novel C@C composite adsorbents[J]. Microporous and Mesoporous Materials, DOI: 10.1016/j.micromeso.2020.110840. [百度学术]
Khamkeaw A, Phisalaphong M, Jongsomjit B, et al. Synthesis of mesoporous MFI zeolite via bacterial cellulose-derived carbon templating for fast adsorption of formaldehyde[J]. Journal of Hazardous Materials, DOI: 10.1016/j.jhazmat.2019.121161. [百度学术]
熊明诚. 基于纤维素的ZSM-5沸石双模板合成及其甲醛吸附性能研究[D]. 福州:福建农林大学, 2020. [百度学术]
XIONG M C. Synthesis of cellulose based ZSM-5 zeolite double template and its formaldehyde adsorption performance [D]. Fuzhou: Fujian Agriculture and Forestry University, 2020. [百度学术]
ZHAO D, TIAN Y, JING X, et al. PAF-1@cellulose nanofibril composite aerogel for highly-efficient removal of bisphenol A[J]. Journal of Materials Chemistry A, 2019, 7(1): 157-164. [百度学术]
DONG P, CHENG J, DA H, et al. Spin hall effect of transmitted light for graphene-silica aerogel photonic crystal in terahertz region[J].Optics Communications, DOI: 10.1016/j.optcom.2020. 126744. [百度学术]
朴春梅. 有害气体检测用纤维素光子晶体制备技术[D]. 北京:北京理工大学, 2016. [百度学术]
PIAO C M. Preparation technology of cellulose photonic crystal for harmful gas detection [D]. Beijing: Beijing University of Technology, 2016. [百度学术]
Zhang W, Dehghani-Sanij A A, Blackburn R S. Carbon based conductive polymer composites[J]. Journal of Materials Science, 2007, 42(10):3408-3418. [百度学术]
Pang Z, Yang Z, Chen Y, et al. A room temperature ammonia gas sensor based on cellulose/TiO2/PANI composite nanofibers[J].Colloids & Surfaces A Physicochemical & Engineering Aspects, 2016, 5:248-255. [百度学术]
Yang L, Yang L, Wu S, et al. Three-dimensional conductive organic sulfonic acid co-doped bacterial cellulose/polyaniline nanocomposite films for detection of ammonia at room temperature[J]. Sensors and Actuators B Chemical, DOI:10.1016/j.snb. 2020.128689. [百度学术]
Onal A, Tekkeli S E K, Onal C. A review of the liquid chromatographic methods for the determination of biogenic amines in foods[J]. Food Chemistry, 2013, 138(1): 509-515. [百度学术]
Butina K,Tomac A,Choong F X, et al. Optotracing for selective fluorescence-based detection, visualization and quantification of lives aureus in real-time[J]. Biofilms and Microbomes, DOI:10.1038/s41522-020-00150-y. [百度学术]
JIA R N, TIAN WG, BAI H T, et al. Amine-responsive cellulose-based ratiometric fluorescent materials for real-time and visual detection of shrimp and crab freshness[J]. Nature Communi⁃cations, DOI: 10.1038/s41467-019-08675-3. [百度学术]
Wang S, Chen H Y, Xie H L, et al. A novel thioctic acid-carbon dots fluorescence sensor for the detection of H
Ehrat F, Bhattacharyya S, Schneider J, et al. Tracking the Source of Carbon Dot Photoluminescence: Aromatic Domains versus Molecular Fluorophores[J]. Nano Letters, 2017, 17(12):7710-7716. [百度学术]
Guo X, Xu D, Yuan H M, et al. A novel fluorescent nanocellulosic hydrogel based on carbon dots for efficient adsorption and sensitive sensing in heavy metals[J]. Journal of Materials Chemistry A , 2019, 7 (47): 27081-27088. [百度学术]
Hughes T P, Kerry J T, Baird A H, et al. Global warming impairs stock-recruitment dynamics of coral[J].Nature,2019,568 (7752):387-390. [百度学术]
Jin L Q, Sun Q C, Xu Q H, et al. Adsorptive removal of anionic dyes from aqueous solutions using microgel based on nanocellulose and polyvinylamine[J]. Bioresource Technology, 2015, 197: 348-355. [百度学术]
LIU S,ZHANG Y,JIANG H,et al. High CO2 adsorptionby amino-modified bio-spherical cellulose nanofibres aero-gels[J]. Environ⁃mental Chemistry Letters,2018, 16(2): 605-614. [百度学术]
Zhang T M, Zhang W W, Zhang Y, et al. Gas phase synthesis of aminated nanocellulose aerogel for carbon dioxide adsorption[J]. Cellulose, 2020, 27 (6):2953-2958. [百度学术]
WU Y, ZHANG Y, CHEN N Q, et al. Effects of amine loading on the properties of cellulose nanofibrils aerogel and its CO2 capturing performance[J]. Carbohydrate Polymers, 2018, 8 (15):252-259. [百度学术]
Zhu W K, Yao Y, Zhang Y, et al. Preparation of amine-modified cellulose nanocrystal aerogel by chemical vapor deposition and its application in CO2 capture[J]. Industrial & Engineering Chemistry Research, DOI: 10.1021/acs.iecr.0c02687. [百度学术]
ZHU W, JI M, ZHANG Y, et al. Synthesis and Characterization of Aminosilane Grafted Cellulose Nanocrystal Modified Formaldehyde-Free Decorative Paper and its CO2 Adsorption Capacity[J]. Polymers, DOI: 10.3390/polym11122021. [百度学术]
Wei J, Geng S, Hedlund J, et al. Lightweight, flexible, and multifunctional anisotropic nanocellulose-based aerogels for CO2 adsorption[J]. Cellulose, 2020, 27: 2695-2707. [百度学术]
Gebald C, Wurzbacher J A, Tingaut P, et al. Amine-Based Nanofibrillated Cellulose As Adsorbent for CO2 Capture from Air[J]. Environmental Science & Technology, 2011, 45(20):9101-9108. [百度学术]
Wang C, Biswas S K, Okubayashi S. Polyethylenimine-Impregnated Mesoporous Delignified Wood with High Mechanical Strength for CO2/N2 Selective Adsorption[J]. ACS Applied Nano Materials, 2020, 3(6):5499-5508. [百度学术]
Sehaqui H, Galvez M E, Becatinni V, et al. Fast and Reversible Direct CO2 Capture from Air onto All-Polymer Nanofibrillated Cellulose-Polyethylenimine Foams[J]. Environmental Science & Technology, 2015, 49(5):3167-3174. [百度学术]
张 辉, 贾宏葛, 马立群,等. 乙基纤维素与离子液体共混膜制备及气体分离性能研究[J]. 化工新型材料, 2019, 47(1):105-107. [百度学术]
ZHANG H, JIA H G, MA L Q, et al. Preparation and gas separation properties of ethyl cellulose ionic liquid blend membrane [J]. New Chemical Materials, 2019, 47 (1): 105-107 [百度学术]
Vera E, Alcántar-Vázquez B, Pfeiffer H. CO2 chemisorption and evidence of the CO oxidation–chemisorption mechanisms on sodium cobaltate[J]. Chemical Engineering Journal, 2015, 271: 106-113. [百度学术]
王一飞, 周丽君, 杨 吉, 等. 光子晶体纤维素膜检测二氧化硫气体[J]. 分析化学, 2018, 46(9):1472-1478. [百度学术]
WANG Y F, ZHOU L J, YANG J, et al. Detection of sulfur dioxide with photonic crystal cellulose membrane [J]. Analytical Chemistry, 2018, 46 (9): 1472-1478. [百度学术]
徐敏琪, 刘凯华, 何北海, 等. 多壁碳纳米管/纤维素-羟丙基甲基纤维素甲醛传感器的制备及其气敏性能[J]. 造纸科学与技术, 2014, 33(6):112-115. [百度学术]
XU M Q, LIU K H, HE B H, et al. Preparation and gas sensing properties of multi walled carbon nanotubes/cellulose hydroxypropyl methylcellulose formaldehyde sensor [J]. Papermaking Science and Technology, 2014, 33(6): 112-115. [百度学术]
Xu X Y, Lian X, Hao J N, et al. A Double-stimuli-responsive Fluorescent Center for Monitoring of Food Spoilage based on Dye Covalently Modified EuMOFs: From Sensory Hydrogels to Logic Devices[J]. Advanced Materials, DOI:10.1002/adma.201702298. CPP [百度学术]