摘要
纳米纤维素/纳米铜复合材料兼顾了纳米纤维素的优异力学和光学性能、高比表面积、低热膨胀系数、环境友好等特性以及铜的导电、导热、抗菌等性能,近年来在锂离子电池、多相催化、抗菌领域有广泛的应用。本文首先分别介绍了纳米纤维素和纳米铜的制备方法和理化特性;重点阐述了纳米纤维素/纳米铜复合材料的制备方法(物理沉积法和化学还原法)、理化特性(导电性能、催化性能和抗菌性能)及其在电子器件、催化剂和抗菌材料的应用进展;最后总结了纳米纤维素/纳米铜复合材料存在的问题并展望了未来的发展趋势。
石油或煤炭等不可再生原料制备的合成高分子材料具有使用便捷、成本低廉、易加工成型等优点,广泛应用于汽车、食品、生物医学、电子器件、水处理等领域,为人类社会的进步和人民生活质量的提升做出不可磨灭的贡
使用可再生、可持续的生物基新材料是解决上述问题的重要途径之一。纤维素是地球上最丰富的生物高分
然而,金、银等贵金属价格昂贵、储量有限,极大地制约了它们的规模化应用。纳米铜因储量丰富,且具有与金、银纳米结构相近的高导电、高导热性能,逐渐成为贵金属的理想替代品。纳米纤维素/纳米铜复合材料具备良好的导电、导热、抗菌性能以及优异的力学性能,且价格低廉,在电子器件、催化剂、抗菌等领域呈现出巨大应用潜力。
本文综述了纳米纤维素/纳米铜复合材料的制备、性能及应用。首先介绍了3类典型的纳米纤维素(纤维素纳米纤丝(CNF)、纤维素纳米晶体(CNC)和细菌纤维素(BC))的制备方法和理化特性,以及纳米铜的制备方法和优缺点;重点阐述了纳米纤维素/纳米铜复合材料的制备方法、理化特性及其在电子器件、催化、抗菌领域应用的现状;最后,对纳米纤维素/纳米铜复合材料进行总结和展望。
根据来源、制备方法及纤维形态的不同,纳米纤维素可以分为3类:CNF、CNC和BC,其透射电子显微镜图如

图1 纳米纤维素的透射电子显微镜
Fig. 1 Transmission electron microscopy images of nanocellulos
CNF是一种半结晶状态的纳米纤维素,具有高的长径比(直径3.5~30 nm,长度几百纳米到几个微米)、高强度、低密度、良好的生物相容性等特
CNC是一种高结晶状态的纳米纤维素(直径在5~70 nm,长度几百纳米
铜是一种拥有高导热系数、高电导率和抗腐蚀的金属。相比于金、银等贵金属,铜的储量丰富且成本低

图2 纳米铜制备方法的分
Fig. 2 Preparation methods of copper nanoparticle
物理法可分为“自上而下法”和“自下而上法”。“自上而下法”是通过高能球磨

图3 物理法制备纳米
Fig. 3 Preparation of copper nanoparticles by physical method
化学法是通过化学反应形成纳米铜的方法,主要有电解
纳米铜颗粒热力学性能不稳定,易发生团聚。纳米纤维素对金属纳米粒子具有良好的稳定作用,可促进金属纳米粒子成核及防止团

图4 纳米纤维素/纳米铜复合材料的制备/理化特性及应
Fig. 4 Preparation, physicochemical properties and application of nanocellulose/copper nanocomposite
纳米纤维素/纳米铜复合材料可通过物理沉积法或化学还原法将铜纳米粒子负载到纳米纤维素制备。
物理沉积法是通过直流溅射、热压等物理方法将铜纳米粒子沉积到纳米纤维素表面。Lizundia等

图5 直流溅射法制备CNF/Cu复合材
Fig. 5 Preparation of CNF/Cu composites by DC sputterin
化学还原法是利用各种还原剂还原铜离子得到纳米铜,并将其沉积在纳米纤维素上的方法(

图6 化学还原法制备CNF/Cu复合材料示意
Fig. 6 Schematic diagram of CNFs/Cu composites prepared by chemical reductio
除了采用抗氧化剂和过量的还原剂来提高纳米铜的纯度,在氮气等惰性气体保护下提高纳米铜纯度也有报道。
近年来,利用从植物中得到的提取液做生物还原剂逐渐成为研究热点。生物还原剂具有无毒害、可再生、储量丰富的优点。Barua等

图7 CNC-PAAm前体和CNC-Cu复合材料的TEM及SEM
Fig. 7 TEM and SEM images of CNC-PAAm and CNC-C
提高CNF与纳米铜结合的另一方法是将CNF制备为二维薄膜材料,使CNF表面官能团均匀分布。Bendi等

图8 纵横交错的Cu@CNF复合材料SEM
Fig. 8 SEM images of the criss-crossed Cu@CNF composite
化学还原法制备的纳米纤维素/纳米铜复合材料通过氢键结合,具备良好的力学性能,且制备过程简单、能耗低,可以通过改变还原剂种类、浓度等因素调控其形貌,已经成为目前最主要的制备方法。
CNF/Cu复合材料具备良好的机械柔韧性(杨氏模量2.62~4.72 GPa,拉伸强度30.2~70.6 MPa,断裂伸长率2.3%~4.1%,厚度29.3~38.3 μm(见

图9 CNF/Cu复合材料的照片、SEM图及铜元素能谱
Fig. 9 Photo and SEM image with the Cu elemental mapping of CNF/Cu composite
CNF/Cu复合膜电导率为8.59×1
铜具有高还原电位,与胺等富电子基团有较高的官能团相容性,这使得CNF/Cu多相催化剂对脂肪族胺、乙烯基化合物等呈现出良好的催化性能,催化效率均在90%以上,如
纳米纤维素/纳米铜复合材料具备良好的导电性、高的比表面积和高电荷传输效率,作为锂离子电池、传感器等电子器件电极材料很有潜
利用纳米铜优异的导电性能,将纳米铜添加到SnOx/CNF阳极电极中可显著提升其电荷转移速率以及可逆性

图10 CNF/Cu复合材料用作锂离子电池电流收集器示意
Fig. 10 CNF/Cu composite used as a lithium-ion battery current collecto
此外,纳米铜被光波激发会出现局域表面等离子体共振,通过纳米铜的吸收/散射光谱可以得到光波的信息。以透明的CNC作为基材,借助纳米铜的光波响应特性,可将CNC/Cu复合材料应用于光学传感器中。Zhang等

图11 CNC/Cu复合材料用作新型多元分析传感器机
Fig. 11 Schematic illustration of CNC/Cu composite used as a multireadout signal mode-guided multianalyte assay
CNF/Cu复合材料由于具有高导热性、低热膨胀系数,能够有效散热而不发生剧烈热膨胀,可充当散热器件应用于电子器
传统均相催化剂存在难以回收和再利用的问题。因此,寻找简便、环保、可回收的绿色工艺制备多相纳米金属催化剂受到关注。CNC/Cu复合材料具有高比表面积及良好的催化性能,可以作为多相催化剂,其选择性和活性相较于均相催化剂有显著提高,已经成为催化领域应用最为广泛的纳米纤维素/纳米铜复合材料。Dutta等
纳米纤维素对纳米铜起到了分散和锚定的作用,因而它们形成的多相催化剂相较于单一金属催化剂性能更好。如1,2,3-三唑化合物是一种重要的工业原料,传统的制备过程需要高温环境且会有很多副产物。Chetia等

图12 CNF/Cu复合材料催化硫化物氧化成亚砜、伯醇氧化成醛的示意
Fig. 12 Schematic diagram of sulfoxide oxidation and primary alcohol oxidation to aldehydes catalyzed by CNF/Cu composite
通过结构设计可进一步提高纳米纤维素/纳米铜复合材料的催化性能。Zhang等

图13 CNF@MSA-Cu的SEM图和TEM
Fig. 13 SEM image and TEM image of CNF@MSA-C
BC/Cu复合材料在催化领域也有报道。在传统的反硝化催化过程中,铜/钯是目前最好的金属催化剂,但是其易发生团聚而降低催化速率,Sun等
纳米纤维素/纳米铜复合材料的低毒性、良好的抗菌效果,使得其在抗菌、生物敷
纳米纤维素/纳米铜复合材料的抗菌机理在于纳米铜会吸附在细菌和真菌细胞表面,破坏细胞膜导致结构蛋白的凝固,从而使细菌和真菌失去活性(见

图14 CNF/Cu复合材料抗菌过程及细菌失活示意
Fig. 14 Antibacterial process and inactivation of CNF/Cu composite
本文着重总结和讨论了近年来纳米纤维素/纳米铜复合材料制备方法、理化性能及其应用现状。纳米纤维素/纳米铜复合材料兼具铜的导电、导热特性和纳米纤维素的多孔网络结构,在电子器件、催化、抗菌等领域有着广阔而光明的应用前景。
然而,纳米纤维素/纳米铜复合材料的制备还存在以下问题:①纳米纤维素与纳米铜界面相容性不佳。2者表面性能差异大,不易于结合;②纳米铜的尺寸难以精确调控。目前关于铜离子在纳米纤维素表面相互作用的机理尚不明确,而这对纳米铜的尺寸控制会产生直接影响;③纳米铜易氧化。纳米铜的化学性质很活泼,容易被空气氧化生成氧化铜或氧化亚铜,而影响其导电、导热等性能。
未来,纳米纤维素/纳米铜复合材料的制备及应用会有如下几个潜在发展方向。
(1)纳米纤维素的表面修饰。在一定范围内,适当增加纳米纤维素表面官能团种类和数量(如羧基、氨基、磺酸基等),可以更好地促进纳米铜在纳米纤维素上的沉积,避免团聚的同时,提高纳米纤维素与纳米铜的结合力。
(2)将纳米铜制备为二维材料。目前的主流思路是降低纳米铜尺寸(如盐分解工艺),未来可以考虑将纳米铜制备为铜膜等二维材料(增大其尺寸),并采用合适的表面处理工艺对铜膜改性,促进其与纳米纤维素结合。
(3)复合材料的抗氧化处理。纳米铜很容易受到氧化,难点在于在保护纳米铜的同时不能显著降低其导电、导热性能。采用有机溶剂苯并三唑等对纳米铜表面进行处理,在纳米铜表面包覆导电聚合物、金属氧化物,或将其制备为铜纳米线等方法,一定程度上可以抗氧化,但是上述方法对纳米铜的性能都有一定程度的影响。Peng等
(4)开发更高效的绿色还原剂。水合肼、硼氢化钠等化学还原剂对环境有巨大危害,可以考虑开发植物提取液做还原剂,并对提取液进行浓缩等处理以提升还原性(植物提取液还原性较低)。
(5)进一步拓展纳米纤维素/纳米铜复合材料的应用领域。目前纳米铜在临床医学(抗肿瘤、治疗阿尔茨海默氏症等)、光催化、点击化学等领域展现出巨大潜力,可以拓展纳米纤维素/纳米铜复合材料在上述领域的应用。
参考文献
SÁNCHEZ C. Fungal potential for the degradation of petroleum-based polymers: An overview of macro and microplastics biodegradation[J]. Biotechnology Advances, 2020, 40: 107501-107513. [百度学术]
DOSHI B, SILLANPÄÄ M, KALLIOLA S. A review of bio-based materials for oil spill treatment[J]. Water Research, 2018, 135: 262-277. [百度学术]
ZHANG F, LAN X W, PENG H W, et al. A “Trojan Horse” Camouflage Strategy for High-performance Cellulose Paper and Separators[J]. Advanced Functional Materials, 2020, 30(32): 2002169-2002176. [百度学术]
VATANSEVER E, ARSLAN D, NOFAR M. Polylactide cellulose-based nanocomposites[J]. International Journal of Biological Macromolecules, 2019, 137: 912-938. [百度学术]
OSTLE C, THOMPSON R C, BROUGHTON D, et al. The rise in ocean plastics evidenced from a 60-year time series[J]. Nature Communacations, 2019, 10(1): 1622-1626. [百度学术]
COZAR A, ECHEVARRIA F, GONZALEZ-GORDILLO J I, et al. Plastic debris in the open ocean[J]. Proceedings of the National Academy of Sciences, 2014, 111(28): 10239-10244. [百度学术]
段 博, 涂 虎, 张俐娜, 等. 可持续高分子-纤维素新材料研究进展[J]. 高分子学报, 2020, 51(1): 66-86. [百度学术]
DUAN B, TU H, ZHANG L N, et al. Research progress of new sustainable polymer-cellulose materials[J]. Macromolecular Journal, 2020, 51(1): 66-86. [百度学术]
WU X, LU C, ZHANG W, et al. A novel reagentless approach for synthesizing cellulose nanocrystal-supported palladium nanoparticles with enhanced catalytic performance[J]. Journal of Materials Chemistry A, 2013, 1(30): 8645-8652. [百度学术]
OUN A A, SHANKAR S, RHIM J. Multifunctional nanocellulose/metal and metal oxide nanoparticle hybrid nanomaterials[J]. Critical Reviews in Food Science and Nutrition, 2020, 60(3): 435-460. [百度学术]
ZHANG Q, ZHANG L, WU W, et al. Methods and applications of nanocellulose loaded with inorganic nanomaterials: A review[J]. Carbohydrate Polymers, 2020, 229: 115454-115473. [百度学术]
FAROOQ A, PATOARY M K, ZHANG M, et al. Cellulose from sources to nanocellulose and an overview of synthesis and properties of nanocellulose/Zinc oxide nanocomposite materials[J]. International Journal of Biological Macromolecules, 2020, 154: 1050-1073. [百度学术]
THOMAS B, RAJ M C, B ATHIRA K , et al. Nanocellulose, a Versatile Green Platform: From Biosources to Materials and Their Applications[J]. Chemical Reviews, 2018, 118(24): 11575-11625. [百度学术]
LUO J, YUAN W, HUANG S M, et al. From Checkerboard-like Sand Barriers to 3D Cu@CNF Composite Current Collectors for High-performance Batteries[J]. Advanced Science, 2018, 5(7): 1800031-1800040. [百度学术]
Mehran P, Shahram N, Mohammad A F Z, et al. Fabrication of stable copper nanoparticles embedded in nanocellulose film as a bionanocomposite plasmonic sensor and thereof for optical sensing of cyanide ion in water samples[J]. Cellulose, 2019, 26: 4945-4956. [百度学术]
EI-DENDY D M, ABDEL GHANY N A, ALLAM N K. Green, single-pot synthesis of functionalized Na/N/P co-doped graphene nanosheets for high-performance supercapacitors[J]. Journal of Bionanoscience, 2019, 837: 30-38. [百度学术]
GOSWAMI M, DAS A M. Synthesis of cellulose impregnated copper nanoparticles as an efficient heterogeneous catalyst for CN coupling reactions under mild conditions[J]. Carbohydrate Polymers, 2018, 195: 189-198. [百度学术]
ZHOU Z H, LU C H, WU X D, et al. Cellulose nanocrystals as a novel support for CuO nanoparticles catalysts: Facile synthesis and their application to 4-nitrophenol reduction[J]. RSC Advances, 2013, 3(48): 26066-26073. [百度学术]
WU X D, LU C H, ZHOU Z H, et al. Green synthesis and formation mechanism of cellulose nanocrystal-supported gold nanoparticles with enhanced catalytic performance[J]. Environmental Science: Nano, 2014, 1(1): 71-79. [百度学术]
KAUSHIK M, BASU K, BENOIT C, et al. Cellulose Nanocrystals as Chiral Inducers: Enantioselective Catalysis and Transmission Electron Microscopy 3D Characterization[J]. Journal of the American Chemical Society, 2015, 137(19): 6124-6127. [百度学术]
KAUSHIK M, LI A Y, HUDSON R, et al. Reversing aggregation: direct synthesis of nanocatalysts from bulk metal. Cellulose nanocrystals as active support to access efficient hydrogenation silver nanocatalysts[J]. Green Chemistry, 2016, 18: 129-133. [百度学术]
SHIN Y S, BAE I T, AREY B W, et al. Simple preparation and stabilization of nickel nanocrystals on cellulose nanocrystal[J]. Materials Letter, 2007, 61(14/15): 3215-3217. [百度学术]
FAROOQ A, PATOARY M K, ZHANG M, et al. Cellulose from sources to nanocellulose and an overview of synthesis and properties of nanocellulose/Zinc oxide nanocomposite materials[J]. International Journal of Biological Macromolecules, 2020, 154: 1050-1073. [百度学术]
ZHU H, FANG Z, PRESTON C, et al. Transparent paper: fabrications, properties, and device applications[J]. Energy & Environmental Science, 2014, 7: 269-287. [百度学术]
ATHINARAYANAN J, ALSHATWI A A, PERIASAMY V S, et al. Biocompatibility Analysis of Borassus Flabellifer Biomass-derived Nanofibrillated Cellulose[J]. Carbohydrate Polymers, 2020, 235: 115961-115971. [百度学术]
CHEN W S, YU H P, LEE S Y, et al. Nanocellulose: a promising nanomaterial for advanced electrochemical energy storage[J]. Chemical Society Reviews, 2018, 47(8): 2837-2872. [百度学术]
WANG H Y, CHEN C C, FANG L, et al. Effect of delignification technique on the ease of fibrillation of cellulose II nanofibers from wood[J]. Cellulose, 2018, 25: 7003-7015. [百度学术]
BONDANCIA T J, CORRÊA L J, CRUZ A J G, et al. Enzymatic production of cellulose nanofibers and sugars in a stirred-tank reactor: determination of impeller speed, power consumption, and rheological behavior[J]. Cellulose, 2018, 25(8): 4499-4511. [百度学术]
IWAMOTO S, NAKAGAITO A N, YANO H, et al. Optically transparent composites reinforced with plant fiber-based nanofibers[J]. Applied Physics A-Materials Science & Processing, 2005, 81(6): 1109-1112. [百度学术]
GHASEMI S, BEHROOZ R, GHASEMI I. Extraction and Characterization of Nanocellulose Structures from Linter Dissolving Pulp Using Ultrafine Grinder[J]. Journal of Nanoscience and Nanotechnology, 2016, 16(6): 5791-5797. [百度学术]
TEIXEIRA E D M, LOTTI C, CORRÊA A C, et al. Thermoplastic corn starch reinforced with cotton cellulose nanofibers[J]. Journal of Applied Polymer Science, 2011, 120(4): 2428-2433. [百度学术]
KUMAR R, KUMARI S, SURAH S S, et al. A simple approach for the isolation of cellulose nanofibers from banana fibers[J]. Materials Research Express, 2019, 6(10): 105601-105612. [百度学术]
RODRIGUEZ N L G, THIELEMANS W, DUFRESNE A. Sisal cellulose whiskers reinforced polyvinyl acetate nanocomposites[J]. Cellulose, 2006, 13(3): 261-270. [百度学术]
HABIBI Y, LUCIA L A, ROJAS O J. Cellulose Nanocrystals: Chemistry, Self-assembly, and Applications[J]. Chemical Reviews, 2010, 110: 3479-3500. [百度学术]
WEI L, AGARWAL U P, HIRTH K C, et al. Chemical modification of nanocellulose with canola oil fatty acid methyl ester[J]. Carbohydrate Polymers, 2017, 169: 108-116. [百度学术]
DUJARDIN E, BLASEBY M, MANN S. Synthesis of mesoporous silica by sol-gel mineralisation of cellulose nanorod nematic suspensions[J]. Journal of Materials Chemistry, 2003, 13(4): 696-699. [百度学术]
JOHN M, THOMAS S. Biofibres and biocomposites[J]. Carbohydrate Polymers, 2008, 71(3): 343-364. [百度学术]
IWAMOTO S, NAKAGAITO A N, YANO H. Nano-fibrillation of pulp fibers for the processing of transparent nanocomposites[J]. Applied Physics A-Materials Science & Processing, 2007, 89(2): 461-466. [百度学术]
KLEMM D, KRAMER F, MORITZ S, et al. Nanocelluloses: A New Family of Nature-based Materials[J]. Angewandte Chemie International Edition, 2011, 50(24): 5438-5466. [百度学术]
TOKOH C, TAKABE K, FUJITA M, et al. Cellulose Synthesized by Acetobacter Xylinum in the Presence of Acetyl Glucomannan[J]. Cellulose, 1998, 5: 249-261. [百度学术]
NOGI M, YANO H. Transparent Nanocomposites Based on Cellulose Produced by Bacteria Offer Potential Innovation in the Electronics Device Industry[J]. Advanced Materials, 2008, 20(10): 1849-1852. [百度学术]
CASTRO C, ZULUAGA R, PUTAUX J, et al. Structural characterization of bacterial cellulose produced by Gluconacetobacter swingsii sp. from Colombian agroindustrial wastes[J]. Carbohydrate Polymers, 2011, 84(1): 96-102. [百度学术]
MUSA A, AHMAD M B, HUSSEIN M Z, et al. Synthesis of Nanocrystalline Cellulose Stabilized Copper Nanoparticles[J]. Journal of Nanomaterials, 2016, 2016: 8-14. [百度学术]
杨 峰, 夏晓雷, 徐 创, 等. 纳米铜润滑油添加剂的摩擦学特性及其自修复机理[J]. 材料保护, 2018, 51(2): 22-25. [百度学术]
YANG F, XIA X L, XU C, et al. Self-repairing Mechanism and Tribological Properties of Nano-Cu as Lubricating Oil Additives[J]. Materials Protection, 2018, 51(2): 22-25. [百度学术]
CHI C, LAN J L, SUN J M, et al. Amorphous Cu-added/SnOx/CNFs composite webs as anode materials with superior lithium-ion storage capability[J]. RSC Advances, 2015, 51: 41210-41217. [百度学术]
SIDDIQUI M N, REDHWI H H, ACHILIAS D S, et al. Green Synthesis of Silver Nanoparticles and Study of Their Antimicrobial Properties[J]. Journal of Polymers and the Environment, 2018, 26: 423-433. [百度学术]
王文静. 粉末热机械固结法制备铜及铜碳合金的显微结构和力学性能的研究[D]. 上海:上海交通大学, 2018. [百度学术]
WANG W J. Microstructure and mechanical properties of Copper and Copper-Carbon alloys prepared by powder thermomechanical consolidation[D]. Shanghai: Shanghai Jiaotong University, 2018. [百度学术]
谢中亚, 徐建生. 高能球磨法制备纳米金属铜粒子工艺条件研究[J]. 润滑与密封, 2006(3):126-128. [百度学术]
XIE Z Y, XU J S. Study on technological conditions of preparation of nanometer copper particles by high energy ball milling[J]. Lubrication and sealing, 2006(3): 126-128. [百度学术]
刘 瑜. 低松比铜及铜合金粉雾化工艺的研究[J]. 科技风, 2014, 38(11): 45-62. [百度学术]
LIU Y. Study on atomization technology of copper and Copper alloy powder with low pine ratio[J]. Technology Wind, 2014, 38(11): 45-62. [百度学术]
TEMUUJIN J, BARDAKHANOV S P, NOMOEV A V, et al. Preparation of copper and silicon/copper powders by a gas evaporation-condensation method[J]. Bulletin of Materials Science, 2009, 32(5): 543-547. [百度学术]
陈祖耀, 陈 波, 钱逸泰, 等. γ射线辐照-水热结晶联合法制备金属超微粒子[J]. 金属学报, 1992, 28(4): 1-10. [百度学术]
CHEN Z Y, CHEN B, QIAN Y T, et al. Preparation of metal ultramicro particles by gamma-ray irradiation and hydrothermal crystallization[J]. Acta Metalica Sinica. 1992, 28(4): 1-10. [百度学术]
XIA W T, XIANG X Y, YANG W Q, et al. Effect of Flow Pattern on Energy Consumption and Properties of Copper Powder in the Electrolytic Process[J]. Solid State Phenomena, 2018, 279: 77-84. [百度学术]
闫 军, 崔海萍, 杜仕国, 等. 溶胶-凝胶法应用于Cu粉抗氧化工艺研究[J]. 特种铸造及有色合金, 2006(7): 459-461. [百度学术]
YAN J, CUI H P, DU S G, et al. Study on Sol-gel Method for Antioxidation of Cu Powder[J]. Special Casting and Nonferrous Alloys, 2006(7): 459-461. [百度学术]
ZHANG D D, LIU H M, SHU X L, et al. Nanocopper-loaded Black phosphorus nanocomposites for efficient synergistic antibacterial application[J]. Journal of Hazrdous Materials, 2020, 393: 122317-122326. [百度学术]
蔡逸飞, 徐建生, 郭志光, 等. 微乳液法制备纳米金属铜及其摩擦学性能研究[J]. 材料导报, 2006(S1):172-174. [百度学术]
CAI Y F, XU J S, GUO Z G, et al. Preparation of nanometer copper by microemulsion and its tribological properties[J]. Material Guide, 2006(S1): 172-174. [百度学术]
张 萌, 霍 地, 孙旭东, 等. 采用抗坏血酸液相还原法制备微纳米铜粉[J]. 中国有色金属学报, 2017, 27(4):747-752. [百度学术]
ZHANG M, HUO D, SUN X D, et al. Preparation of nanometer copper powder by ascorbic acid phase reduction method[J]. The Chinese Journal of Nonferrous Metals, 2017, 27(4): 747-752. [百度学术]
王 杜, 苏晓磊, 吉 辰, 等. 液相法制备窄粒径分布微米铜粉的研究[J]. 电子元件与材料, 2020, 39(1): 20-25. [百度学术]
WANG D, SU X L, JI C, et al. Preparation of micron copper powder with narrow size distribution by aqueous method[J]. Electronic Components & Materials, 2020, 39(1): 20-25. [百度学术]
NAZAR N, BIBI I, KAMAL S, et al. Cu nanoparticles synthesis using biological molecule of P. granatum seeds extract as reducing and capping agent: Growth mechanism and photo-catalytic activity[J]. International Journal of Biological Macromolecules, 2018, 106: 1203-1210. [百度学术]
RAJESH K M, AJITHA B, REDDY Y A K, et al. Assisted green synthesis of copper nanoparticles using syzygium aromaticum bud extract: Physical, optical and antimicrobial properties[J]. Optik-International Journal for Light and Electron, 2018, 154: 593-600. [百度学术]
MAZUMDER J A, AHMAD R, SARDAR M. Reusable magnetic nanobiocatalyst for synthesis of silver and gold nanoparticles[J]. International Journal of Biological Macromolecules, 2016, 93: 66-74. [百度学术]
HUANG J L, GRAY D G, LI C J. A(3)-Coupling catalyzed by robust Au nanoparticles covalently bonded to HS-functionalized cellulose nanocrystalline films[J]. Beilstein Journal of Organic Chemistry, 2013, 9: 1388-1396. [百度学术]
LIZUNDIA E, DELGADO M, MUTJÉ P, et al. Cu-coated cellulose nanopaper for green and low-cost electronics[J]. Cellulose, 2016, 23(3): 1997-2010. [百度学术]
CHETIA M, ALI A A, BORDOLOI A, et al. Facile route for the regioselective synthesis of 1,4-disubstituted 1,2,3-triazole using copper nanoparticles supported on nanocellulose as recyclable heterogeneous catalyst[J]. Journal of Chemical Sciences, 2017, 129(8): 1211-1217. [百度学术]
DUTTA A, CHETIA M, ALI A A, et al. Copper Nanoparticles Immobilized on Nanocellulose: A Novel and Efficient Heterogeneous Catalyst for Controlled and Selective Oxidation of Sulfides and Alcohols[J]. Catalyst Letters, 2019, 149(1): 141-150. [百度学术]
GOSWAMI M, DAS A M. Synthesis of cellulose impregnated copper nanoparticles as an efficient heterogeneous catalyst for C N coupling reactions under mild conditions[J]. Carbohydrate Polymers, 2018, 195: 189-198. [百度学术]
SUN D, YANG J, LI J, et al. Novel Pd-Cu/bacterial cellulose nanofibers: Preparation and excellent performance in catalytic denitrification[J]. Applied Surface Science, 2010, 256(7): 2241-2244. [百度学术]
BARUA S, DAS G, AIDEM L, et al. Copper-copper oxide coated nanofibrillar cellulose: a promising biomaterial[J]. RSC Advances, 2013, 3: 14997-15004. [百度学术]
RAZAVI R, MOLAEI R, MORADI M, et al. Biosynthesis of metallic nanoparticles using mulberry fruit (Morus alba L.) extract for the preparation of antimicrobial nanocellulose film[J]. Applied Nanoscience, 2020, 10(2): 465-476. [百度学术]
SILVAIN J F, VINCENT C, HEINTZ J M, et al. Novel processing and characterization of Cu/CNF nanocomposite for high thermal conductivity applications[J]. Composite Science Technology, 2009, 69(14): 2474-2484. [百度学术]
HEBEISH A, FARAG S, SHARAF S, et al. Development of cellulose nanowhisker-polyacrylamide copolymer as a highly functional precursor in the synthesis of nanometal particles for conductive textiles[J]. Cellulose, 2014, 21(4): 3055-3071. [百度学术]
ZHANG C, ZHOU M, LIU S, et al. Copper-loaded nanocellulose sponge as a sustainable catalyst for regioselective hydroboration of alkynes[J]. Carbohydrate Polymers, 2018, 191: 17-24. [百度学术]
BENDI R, IMAE T. Renewable catalyst with Cu nanoparticles embedded into cellulose nanofiber film[J]. RSC Advances, 2013, 3: 16279-16282. [百度学术]
PINTO R J B, MARTINS M A, LUCAS J M F, et al. Highly Electroconductive Nanopapers Based on Nanocellulose and Copper Nanowires: A New Generation of Flexible and Sustainable Electrical Materials[J]. ACS Applied Materials & Interfaces, 2020, 12(30): 34208-34216. [百度学术]
HUANG J S, WANG L, ZHAO P X, et al. Nanocopper-doped Cross-linked Lipoic Acid Nanoparticles for Morphology-dependent Intracellular Catalysis[J]. ACS Catalyst, 2018, 8(7): 5941-5946. [百度学术]
MA Y, CHEN Y H, HUANG J, et al. A novel colloidal deposition method to prepare copper nanoparticles/polystyrene nanocomposite with antibacterial activity and its comparison to the liquid-phase in situ reduction method[J]. Chemical Papers, 2020, 74: 471-483. [百度学术]
李爱香, 马君志, 郝连庆, 等. 纳米铜再生纤维素纤维的开发及应用[J]. 中国造纸, 2016, 35(10): 24-26. [百度学术]
LI A X, MA J Z, HAO L Q, et al. Development and Application of Nanometer Copper Regenerated Cellulose Fiber[J]. China Pulp & Paper, 2016, 35(10): 24-26. [百度学术]
高 昆, 孙姣姣, 沈梦霞, 等. 基于纳米纤维素的电催化与储能材料的研究进展[J]. 中国造纸, 2021, 40(2): 72-80. [百度学术]
GAO K, SUN J J, SHEN M X, et al. Research Progress of Electrocatalysis and Energy Storage Materials Based on Nanocellulose[J]. China Pulp & Paper, 2021, 40(2): 72-80. [百度学术]
FANG Z Q, HOU G Y, CHEN C J, et al. Nanocellulose-based Films and Their Emerging Applications[J]. Current Opinion in Solid State & Materials Science, 2019, 23(4): 100764-100779. [百度学术]
ZHANG J J, JIA Y X, QI J, et al. Four-in-one: Advanced Copper Nanocomposites for Multianalyte Assays and Multicoding Logic Gates[J]. ACS Nano, 2020, 14: 9107-9116. [百度学术]
PENG J, CHEN B L, WANG Z C, et al. Surface coordination layer passivates oxidation of copper[J]. Nature, 2020, 586: 390-394. CPP [百度学术]