摘要
本文综述了固体酸催化水解纤维素的最新研究进展。基于固体酸的酸性位点和孔隙结构,研磨预处理和均匀水解可以作为提高固体酸水解纤维素效率的方法,分析了纤维素与固体酸之间的相互作用,对固体酸水解纤维素的发展前景进行了展望。
随着社会发展,化石能源短缺问题日益突出,基于可再生木质纤维素的燃料和生物化学品的发展有望减少人类对传统化石资源的依赖和温室气体的排放,并提高能源安
纤维素通过酸或酶(纤维素酶)的催化水解作用裂解糖单元之间的β-1,4糖苷键以生产葡萄

图1 纤维素分子间的氢键作用
Fig. 1 Hydrogen bondng between cellulose molecules
酶(纤维素酶)和均相Brønsted酸(如硫酸和盐酸)是水解纤维素最常用的催化
近20年来,人们在高性能固体酸催化剂合成、催化机理、提高纤维素水解的水热稳定性和可回收性等方面取得了许多成
固体酸是带有表面酸性位点(Lewis酸或Brønsted酸位点)的固体框架结构酸,可用于纤维素的催化水解。固体酸具有可回收、腐蚀性小和对环境友好等优
纤维素是由D-葡萄糖以β-1,4糖苷键连接而成的长链多糖化合物,聚合度通常在100~20000之间,聚合度越高,β-1,4葡聚糖链之间的氢键作用越强,溶解性越差。酸解过程是将纤维素水解为寡糖或单糖,固体酸水解纤维素的原理与其他酸类似。首先,固体酸表面的酸性基团产生质子,质子随机攻击纤维素中的β-1,4糖苷键,纤维素发生水解生成纤维二糖;然后酸性基团使纤维二糖的β-1,4糖苷键发生断裂,水解成葡萄
固体酸将纤维素水解为葡萄糖需要酸性位点。大多数固体酸带有Brønsted酸基团,如强磺酸(SO3H)或弱羧酸(COOH)。还有一些固体酸,如H型沸石和金属氧化物,不仅具有强的Brønsted酸性,而且有Lewis酸
SO3H作为一种强酸基团,能在纤维素水解过程中为β-1,4糖苷键提供质子,聚合物基固体酸、无机固体酸和碳基固体酸都可使用SO3H作为强Brønsted酸性位
仅含COOH等弱酸位基团的固体酸和纤维素酶的弱酸基团都能催化水解纤维素的糖苷键。To等
与催化剂类型无关,β-1,4糖苷键的分解基本上是由酸(质子)催化的。例如,来自均质酸电离产生的质子或纤维素酶催化域中的弱酸位点都能够催化纤维素水解。以纤维二糖为例,固体酸催化水解纤维素的机理如
首先,固体酸接近并与纤维二糖碰撞,表面酸性位点攻击β-1,4糖苷键的氧原子,形成共轭酸。随后C—O键断裂,共轭酸分解释放葡萄糖,形成氧碳离子中间体。快速结合水分子后,另一个葡萄糖和一个自由质子被释放出来。水解液中的游离质子和固体酸继续水解纤维素的β-1,4糖苷键。固体酸从分子链末端和任意位置随机攻击糖苷键,导致纤维素水解。固体酸和纤维素之间的初始接触、分子间的亲和力和水的存在对纤维素的有效水解是不可缺少的。
苯酚羟基(pKa=9.9)等弱酸位点的酸性不足以直接水解纤维素时,他们及含氧基团(如酮和内酯结构)的存在通过氢键提高固体酸对纤维素和低聚葡聚糖的亲和力,在纤维素水解中表现协同效
固体酸水解纤维素的性能不仅与功能性酸位点有关,还与比表面积和多孔结构有关。研究发现,含SO3H的传统Amberlyst-15树脂中虽然SO3H密度高达4.8 mmol/g,但对纤维素的水解性能却比SO3H密度为1.9 mmol/g的碳材料差。其中一个重要原因是Amberlyst-15的比表面积仅为50
固体酸的多孔结构对纤维素大分子的催化水解起关键作
可溶性长链β-1,4葡聚糖可以快速吸附到沸石模板碳(ZTC)催化剂的直径为10~15Å的微孔中,达ZTC质量的80%,并在180℃下处理3 h后,吸附的葡聚糖水解率较高(73%
尽管已经做了大量努力来提高固体酸对纤维素水解的催化活性,但大多数现有固体酸的性能仍不能与液体酸和纤维素酶相比。其原因在于固体酸对纤维素的亲和力差和受限于纤维素的结晶结
固体酸对底物和中间产物的吸附效果是不同的。Yabushita等
纤维素由于受到氢键和纤维素链间存在的紧密的轴向堆积的影响而产生高度结晶,难以被固体酸水解。Kobayashi等
为增强固体酸对纤维素的可及性,发现可以将纤维素在离子液体等纤维素溶剂中进行溶解后再被固体酸水
微波辐射能有效促进固体酸对纤维素的催化水
固体酸水解纤维素时,固体酸和底物之间的充分吸附和接触至关重要,否则固体酸的活性酸性位点就不能接近糖苷键从而完成水解。目前有2种方法,一是改善纤维素与固体酸的物理接触,如混合研磨;另一种方法是提高附着或结合纤维素的亲和力来修饰固体
Kitano等
Kobayashi等
由于固体酸和纤维素底物间的无效相互作用,固体酸水解纤维素通常需要很高的底物催化剂负载量。而纤维素酶在水解时非常活跃,因为纤维素酶有一个与纤维素表面结合的底物结合域和一个负责水解β-1,4糖苷键的催化结构域。为了改善固体酸和纤维素之间的相互结合,提出了纤维素仿生固体酸的概念,引入额外的纤维素结合基团,制备双功能固体酸。Shuai等
在固体酸中引入纤维素结合功能区,增强了纤维素和固体酸之间的相互结合,这是传统单功能固体酸的主要局限性。为了进一步提高纤维素仿生固体酸的性能,应注意选择更有效和稳定的纤维素结合基团,增加纤维素水解/结合位点的密度,操纵多孔结构,以及提高仿酶固体酸的可回收性。
结晶度和聚合度是纤维素的重要特性,对纤维素的固体酸水解有重要的影响。固体酸催化水解纤维素的效率,一方面与固体酸本身的性质有关,如酸性位点密度、多孔结构和官能团的种类;另一方面,通过改变固体酸用量、水解温度、研磨、微波辐射等措施可以改进反应性能。
Rinaldi等
综上所述,高的纤维素结晶度与聚合度相应需要强的固体酸酸解条件,固体酸酸解程度的增大相应会降低结晶度和聚合度。
固体酸相较液体酸在回收方面具有一定优势,有的固体酸本身就很容易从体系中分离出来。Jin等
对于不易分离固体酸可采用合成磁性固体酸等方法,如磁性磺化介孔二氧化硅(Fe3O4-SBA-SO3H
纤维素水解固体酸催化剂的设计、制造和应用取得了重大进展。纤维素水解固体酸催化剂的设计主要针对催化活性、水热稳定性、固体酸和纤维素间相互作用以及可回收性等方面展开研究。
制造具有高催化活性、高表面积、中孔和高密度酸位点的固体酸,进一步深化固体酸和纤维素间的相互作用的认识,如底物(纤维素)、中间体(低聚葡聚糖和纤维二糖)和产物(葡萄糖)在固体酸上的相对亲和力和选择性吸附,对于设计和制造底物亲和性的固体酸,以增强纤维素和固体酸之间的相互作用具有重要作用。另外,合成水热稳定且易于回收的固体酸用于纤维素水解,保护固体酸的SO3H免受高温浸出是一项具有挑战性的工作。一种方法是在较低的温度下水解纤维素,但需要较多的固体酸用量和较长的水解时间。具有超高催化活性的固体酸是解决这一问题的潜在方法。另一种方法是制造密度低于水固体酸,固体酸可以通过离心(从水解产物和残余木质纤维素生物质(未水解的纤维素和木质素)中分离。磁性固体酸易于回收,但在酸性和水热环境中的稳定性需要进一步提高。对于固体酸的再生,开发快速、简便和廉价的再生固体酸的方法,如再磺化和离子交换,也成为了研究前景之一。
参考文献
赵志刚, 程可可, 张建安, 等. 木质纤维素可再生生物质资源预处理技术的研究进展[J]. 现代化工, 2006, 26(2):39-42+44. [百度学术]
ZHAO Z G, CHENG K K, ZHANG J A, et al. Advances in pretreatment technology of lignocellulose renewable biomass[J]. Modem Chemical Industry, 2006, 26(2): 39-42+44. [百度学术]
Mika L T, Csefalvay E, Nemeth A. Catalytic Conversion of Carbohydrates to Initial Platform Chemicals: Chemistry and Sustainability[J]. Chemical Reviews, 2018, 118(2):505-613. [百度学术]
张欢欢, 高飞虎, 张 玲. 固体酸催化纤维素水解制备葡萄糖的研究进展[J]. 食品工业, 2018, 39(9):256-260. [百度学术]
ZHANG H H, GAO F H, ZHANG L. Advances on the Hydrolysis of Cellulose into Glucose by Solid Acid Catalysts[J]. The Food Industry, 2018, 39(9): 256-260. [百度学术]
Rinaldi R F. Acid Hydrolysis of Cellulose as the Entry Point into Biorefinery Schemes[J]. ChemSusChem, 2010, 3(3): 296-296. [百度学术]
张景强, 林 鹿, 孙 勇. 纤维素结构与解结晶的研究进展[J]. 林产化学与工业, 2008, 28(6):109-114. [百度学术]
ZHANG J Q, LIN L, SUN Y. Advance of Studies on Structure and Decrystallization of Cellulose[J]. Chemistry and Industty of Forest Products, 2008, 28(6): 109-114. [百度学术]
付时雨. 纤维素的研究进展[J]. 中国造纸, 2019, 38(6):54-64. [百度学术]
FU S Y. Progress in Cellulose Research[J]. China Pulp & Paper, 2019, 38(6):54-64. [百度学术]
JUTURU V, WU J C. Microbial cellulases: Engineering, production and applications[J]. Renewable and Sustainable Energy Reviews, 2014, 33: 188-203. [百度学术]
Shrotri A, Kobayashi H, Fukuoka A. Cellulose Depolymerization over Heterogeneous Catalysts[J]. Accounts of Chemical Research, 2018, 51(3):761-768. [百度学术]
靳书缘, 程 意, 鲁 杰, 等. 仿酶固体酸的制备及其改善纤维素水解的研究进展[J]. 中国造纸学报, 2020, 35(3):70-79. [百度学术]
JIN S Y, CHENG Y, LU J, et al. Research Progress in Preparation of Enzyme-mimic Solid Acid and Improvement of Cellulose Hydrolysis[J]. Transactions of China Pulp and Paper, 2020, 35(3):70-79. [百度学术]
ZENG M J, PAN X J. Insights into solid acid catalysts for efficient cellulose hydrolysis to glucose: Progress, challenges, and future opportunities[J]. Catalysis Reviews-Science and Engineering, doi:10.1080/01614940.2020.1819936. [百度学术]
叶科丽, 唐艳军, 傅丹宁, 等. 纤维素水解制备葡萄糖的研究进展[J]. 中国造纸学报, 2020, 35(2):81-88. [百度学术]
YE K L, TANG Y J, FU D N, et al. Research Progress in Preparation of Glucose by Hydrolysis of Cellulose[J]. Transactions of China Pulp and Paper, 2020, 35(2):81-88. [百度学术]
Kitano M, Yamaguchi D, Suganuma S, et al. Adsorption-enhanced Hydrolysis of β-1,4-Glucan on Graphene-based Amorphous Carbon Bearing SO3H, COOH, and OH Groups[J]. Langmuir, 2009, 25(9):5068-5075. [百度学术]
Akiyama G, Matsuda R, Sato H, et al. Cellulose hydrolysis by a new porous coordination polymer decorated with sulfonic acid functional groups[J]. Advanced Materials, 2011, 23(29):3294-3297. [百度学术]
Suganuma S, Nakajima K, Kitano M, et al. Hydrolysis of cellulose by amorphous carbon bearing SO3H, COOH, and OH groups[J]. Journal of the American Chemical Society, 2008, 130(38):12787-12793. [百度学术]
Pang J, Wang A, Zheng M, et al. Hydrolysis of cellulose into glucose over carbons sulfonated at elevated temperatures[J]. Chemical Communications, 2010, 46(37):6935-6937. [百度学术]
To A T, Chung P W, Katz A. Weak-acid sites catalyze the hydrolysis of crystalline cellulose to glucose in water: importance of post-synthetic functionalization of the carbon surface[J]. Angewandte Chemie-International Edition, 2015, 127(38):11202-11205. [百度学术]
Guo S F, Sievers C. Synergistic Effect between Defect Sites and Functional Groups on the Hydrolysis of Cellulose over Activated Carbon[J]. ChemSusChem, 2014, 8(3):534-543. [百度学术]
Seri K, Sakaki T, Shibata M, et al. Lanthanum(III)-catalyzed degradation of cellulose at 250℃[J]. Bioresource Technology, 2002, 81(3):257-260. [百度学术]
Fraga A D, Quitete C P B, Ximenes V L, et al. Biomass derived solid acids as effective hydrolysis catalysts[J]. Journal of Molecular Catalysis A-Chemical, 2016, 422:248-257. [百度学术]
Wu Y Y, Fu Z H, Yin D L, et al. Microwave-assisted hydrolysis of crystalline cellulose catalyzed by biomass char sulfonic acids[J]. Green Chemistry, 2010, 12(4):696-700. [百度学术]
Nakajima K, Hara M. Amorphous Carbon with SO3H Groups as a Solid Brønsted Acid Catalyst[J]. ACS Catalysis, 2012, 2(7):1296-1304. [百度学术]
Kobayashi H, Komanoya T, Hara K, et al. Water-tolerant mesoporous-carbon-supported ruthenium catalysts for the hydrolysis of cellulose to glucose[J]. ChemSusChem, 2010, 3(4):440-443. [百度学术]
Konwar L J, Maki A P, Salminen E, et al. Towards carbon efficient biorefining: Multifunctional mesoporous solid acids obtained from biodiesel production wastes for biomass conversion[J]. Applied Catalysis B-Environmental, 2015, 176:20-35. [百度学术]
Zhang B, Chen B, Douthwaite M, et al. Macroporous-mesoporous carbon supported Ni catalysts for the conversion of cellulose to polyols[J]. Green Chemistry, 2018, 20(15):3634-3642. [百度学术]
Liu R, Wang X Q, Zhao X, et al. Sulfonated ordered mesoporous carbon for catalytic preparation of biodiesel[J]. Carbon, 2008, 46(13):1664-1669. [百度学术]
Xing R, Liu Y, Wang Y, et al. Active solid acid catalysts prepared by sulfonation of carbonization-controlled mesoporous carbon materials[J]. Microporous and Mesoporous Materials, 2007, 105(1/2):41-48. [百度学术]
Zhong R Y, Sels B F. Sulfonated mesoporous carbon and silica-carbon nanocomposites for biomass conversion[J]. Applied Catalysis B-Environmental, 2018, 236:518-545. [百度学术]
Chung P W, Charmot A, Click T, et al. Importance of Internal Porosity for Glucan Adsorption in Mesoporous Carbon Materials[J]. Langmuir, 2015, 31(26):7288-7295. [百度学术]
Yabushita M, Techikawara K, Kobayashi H, et al. Zeolite-templated Carbon Catalysts for Adsorption and Hydrolysis of Cellulose-derived Long-chain Glucans: Effect of Post-synthetic Surface Functionalization[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(12):6844-6851. [百度学术]
Chung P W, Yabushita M, To A T, et al. Long-chain Glucan Adsorption and Depolymerization in Zeolite-templated Carbon Catalysts[J]. ACS Catalysis, 2015, 5(11):6422-6425. [百度学术]
Chung P W, Charmot A, Gazit O M, et al. Glucan adsorption on mesoporous carbon nanoparticles: Effect of chain length and internal surface[J]. Langmuir, 2012, 28(43):15222-15232. [百度学术]
Dornath P S, Ruzycky S, Pang, et al. Adsorption-enhanced hydrolysis of glucan oligomers into glucose over sulfonated three-dimensionally ordered mesoporous carbon catalysts[J]. Green Chemistry, 2016, 18(24):6637-6647. [百度学术]
Kobayashi H, Yabushita M, Komanoya T, et al. High-yielding One-pot Synthesis of Glucose from Cellulose Using Simple Activated Carbons and Trace Hydrochloric Acid[J]. ACS Catalysis, 2013, 3(4):581-587. [百度学术]
Li X T, Jiang Y J, Wang L L, et al. Effective low-temperature hydrolysis of cellulose catalyzed by concentrated H3PW12O40 under microwave irradiation[J]. RSC Advances, 2012, 2(17):6921-6925. [百度学术]
Gan L H, Zhu J, Lv L. Cellulose hydrolysis catalyzed by highly acidic lignin-derived carbonaceous catalyst synthesized via hydrothermal carbonization[J]. Cellulose, 2017, 24(12):5327-5339. [百度学术]
Rinaldi R, Palkovits R, Schuth F. Depolymerization of Cellulose Using Solid Catalysts in Ionic Liquids[J]. Angewandte Chemie-International Edition, 2008, 47(42):8047-8050. [百度学术]
Jiang Y J, Li X T, Wang X C, et al, Effective saccharification of lignocellulosic biomass over hydrolysis residue derived solid acid under microwave irradiation[J]. Green Chemistry, 2012, 14(8):2162-2167. [百度学术]
Gazit O M, Katz A. Understanding the role of defect sites in glucan hydrolysis on surfaces[J]. Journal of the American Chemical Society, 2013, 135(11):4398-4402. [百度学术]
Kobayashi H, Kaiki H, Shrotri A, et al. Hydrolysis of woody biomass by a biomass-derived reusable heterogeneous catalyst[J]. Chemical Science, 2016, 7(1):692-696. [百度学术]
Shuai L, Pan X J. Hydrolysis of cellulose by cellulase-mimetic solid catalyst[J]. Energy & Environmental Science, 2012, 5(5):6889-6894. [百度学术]
Rinaldi R, Meine N, Stein J V, et al. Which controls the depolymerization of cellulose in ionic liquids: the solid acid catalyst or cellulose?[J]. ChemSusChem, 2010, 3(2):266-276. [百度学术]
Zhang Y H, Lynd L R. Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems[J]. Biotechnol Bioeng, 2004, 88(7):797-824. [百度学术]
Jin S Y, Gong J W, Yang C, et al. A recyclable and regenerable solid acid for efficient hydrolysis of cellulose to glucose[J]. Biomass & Bioenergy, doi: 10.1016/j.biombioe.2020.105611. [百度学术]
Lai D M, Deng L, Guo Q X, et al. Hydrolysis of biomass by magnetic solid acid[J]. Energy & Environmental Science, 2011, 4(9):3552-3557. CPP [百度学术]