摘要
本研究通过硫酸水解、超声和TEMPO(2,2,6,6-四甲基哌啶氧化物)氧化3种处理方法分别制备了纳米纤维素(CFR-CNC、CFR-CNF和CFR-TNC)及相应薄膜,对纳米纤维素微观形态、结晶度、热稳定性和化学结构进行了表征,同时比较了纳米纤维素薄膜的形态和机械性能。结果表明,3种纳米纤维素具有不同的长宽比(29.2、163.7、132.2)和结晶度(62.5%、52.8%、43.9%)。红外光谱图表明,3种纳米纤维素的纤维素分子结构并未改变,且CFR-TNC成功引入羧基。3种纳米纤维素薄膜中,CFR-CNF薄膜具有较高的拉伸强度(36.6 MPa),CFR-CNC薄膜具有较好的抗形变能力,并且3种薄膜均具有良好的透光性。
以玉米秸秆、芯等为原料制备糠醛已实现工业化,每年所产生的糠醛剩余物可达300多万t,但目前这些糠醛剩余物的主要用途是焚烧制热,浪费资源且污染环
本研究通过硫酸水解法、超声法和TEMPO氧化法从玉米秸秆糠醛剩余物中制备了3种纳米纤维素,并分析了它们的微观形态、结晶性能、热稳定性和化学结构。同时,以这3种纳米纤维素为原料,通过真空过滤制备了纳米纤维素薄膜,并对纳米纤维素薄膜的密度、孔隙率和拉伸机械性能进行了测试和比较。
玉米秸秆糠醛剩余物(CFR),中国科学院大连化学物理研究所;硫酸、苯、无水乙醇、亚氯酸钠和氢氧化钠等均为分析纯,天津广福精细化工研究所;TEMPO试剂,阿拉丁试剂(上海)有限公司。
Scientz-IID型超声波细胞粉碎机(宁波新芝生物科技股份有限公司)、FW100型高速万能粉碎机(天津市泰新仪器有限公司)、SCIENTZ-18N型压盖型冷冻干燥机(宁波新芝生物科技股份有限公司)、TG16-WS型台式离心机(长沙湘智离心机仪器有限公司)、破壁料理搅拌机(安徽黑金石礼品有限公司)、JEOL JSM-35 C型扫描电子显微镜(SEM,捷欧路北京科贸有限公司)、JEM-2100型透射电子显微镜(TEM,捷欧路北京科贸有限公司)、Nicolet Magna 560型傅里叶变换红外光谱仪(FT-IR,杭州中灿科技有限公司)、D8 ADVANCE型X射线衍射仪(XRD,德国Bruker公司)、热重分析仪(TG,美国Perkin-Elmer公司)、CMT6103型电子万能试验机(深圳市世纪天源仪器有限公司)。
CFR纯化纤维素的制备参考已有文献进
根据参考文献[
参照文献[
TNC悬浮液的制备根据文献[
取一定量CFR-CNC配制成质量分数0.3%的悬浮液,通过砂芯过滤器在滤膜(0.45 μm孔径)上形成CFR-CNC凝胶。随后将CFR-CNC凝胶置于通风橱中自燃干燥,直至质量恒定,即得到CFR-CNC薄膜。按照相同方法制备CFR-CNF、CFR-TNC纳米纤维素薄膜。
在10~20 kV的条件下使用SEM对CFR、CFR-PC、CFR-CNC、CFR-CNF和CFR-TNC进行扫描。并对CFR-CNC、CFR-CNF和CFR-TNC薄膜的表面及断面进行SEM观察。表征前样品通过离子溅射仪喷金处理。
分别将CFR-CNC、CFR-CNF和CFR-TNC悬浮液的浓度稀释到0.01%,在超声分散5 min后,取适量的悬浮液到碳网(200目,CSCI)上。在室温下干燥后用TEM观察,加速电压为80 kV。并利用粒径分布计算软件统计纤维的长宽分布。
使用XRD对CFR、CFR-PC、CFR-CNC、CFR-CNF和CFR-TNC的结晶度进行分析。角度设为5°~60°,扫描速度设置为5°/min。结晶度方程如
(1) |
式中,CrI为相对结晶度;I002为002晶面的衍射强度;Iam为2θ=18°附近的非晶质区域的散射强度。
使用SEM和TEM研究了不同样品的微观形态(见


图1 不同样品的SEM图
Fig. 1 SEM images of different samples


图2 不同样品的TEM与长(宽)分布图
Fig. 2 TEM and aspect distribution of different samples
FT-IR是表征纳米纤维素制备过程中化学结构变化的重要手段。

图3 不同样品的FT-IR图
Fig. 3 FT-IR spectra of different samples
在纳米纤维素制备过程中,表征纤维素的特征峰一直存在。在3400 c

图4 不同样品的X射线衍射图
Fig. 4 X-ray diffraction patterns of different samples

图5 不同样品的TG和DTG曲线
Fig. 5 TG and DTG curves of different samples
CFR-CNC、CFR-CNF和CFR-TNC的起始降解温度分别为250℃、270℃和220℃,其热稳定性均低于CFR-PC。这是由于纳米尺寸的纤维素粒径小,比表面积大,暴露在外的羟基较多,从而使得热稳定性降
本研究通过不同方法制备了3种纳米纤维素薄膜,其光学照片及表面微观形貌如


图6 纳米纤维素薄膜的光学照片和表面SEM图
Fig. 6 Optical photographs and surface SEM images of the nanocellulose films
使用万能力学试验机对纳米纤维素薄膜的力学性能进行测试,结果见


图7 3种纳米纤维素薄膜在拉伸试验中的应力-应变曲线和断面SEM图
Fig. 7 Stress-strain curves and cross-sectional SEM images of three nanocellulose films in tensile tests
拉伸断面进一步证实了上述判断。CFR-CNC薄膜断面较为致密,呈“堆砌”状排列,纳米纤维素无明显的缠绕行为,断面较为光滑。因此其拉伸强度最低,而CFR-CNF薄膜断面出现大量丝状结构,出现明显的缠绕现象,拉伸过程中部分纤丝被拉出,具有较高的拉伸强度。CFR-TNC薄膜断面多为层状结构并参差不齐,表明纤丝间结合较弱,拉伸过程中纤丝滑动,力学性能相对较差。
本研究通过硫酸水解法、超声法和TEMPO氧化法从玉米秸秆糠醛剩余物中制备了3种纳米纤维素(CFR-CNC、CFR-CNF、CFR-TNC),并分析了它们的微观形态、结晶性能、热稳定性和化学结构。同时,以这3种纳米纤维素为原料,通过真空过滤制备了纳米纤维素薄膜,并对纳米纤维素薄膜的密度、孔隙率和拉伸机械性能进行了测试和比较。
3.1 CFR-CNC、CFR-CNF和CFR-TNC的纤维形态不一,长度范围主要分布在150~300 nm、700~1200 nm和300~500 nm,且宽度大多小于10 nm。CFR-CNC、CFR-CNF和CFR-TNC的平均长宽比分别为29.2、163.7和132.2。此外,通过X射线衍射仪(XRD)测定3种纳米纤维素的结晶度分别为62.5%、52.8%和43.9%。
3.2 红外光谱图分析表明,CFR-CNC、CFR-CNF和CFR-TNC均保留了纤维的基本结构,并且CFR-TNC成功引入了羧基。热重分析表明,超声法制备的CFR-CNF有着较好的热稳定性,其起始降解温度为270℃,较CFR-CNC(250℃)和CFR-TNC(220℃)的起始降解温度高。
3.3 纳米纤维素形态差异对其薄膜性能产生了一定的影响。在同等厚度下,CFR-CNF薄膜拉伸强度最高(36.6 MPa),相比而言CFR-TNC薄膜拉伸强度(34.8 MPa)略低,而CFR-CNC薄膜的拉伸强度(16.9 MPa)低于前两者,但CFR-CNC薄膜的弹性模量较高(5659 MPa),具有较好的抗形变能力。
参考文献
SUN Y, WANG Z, LIU Y N, et al. A Review on the Transformation of Furfural Residue for Value-Added Products[J]. Energies, doi:10.3390/en13010021. [百度学术]
朱亚崇, 吴朝军, 于冬梅, 等. 纳米纤维素制备方法的研究现状[J]. 中国造纸,2020,39(9):74-83. [百度学术]
ZHU Y C, WU C J, YU D M, et al. Research Status of Nanocellulose Preparation Methods[J]. China Pulp & Paper, 2020, 39(9):74-83. [百度学术]
Alain D J. Preparation and Properties of Cellulose Nanomaterials[J]. Paper and Biomaterials, 2020, 5(3):1-13. [百度学术]
TANG J, SISLER J, GRISHKEWICH N, et al. Functionalization of cellulose nanocrystals for advanced applications[J]. 2017, 494:397-409. [百度学术]
CHAUHAN V S, CHAKRABARTI S K. Use of nanotechnology for high performance cellulosic and papermaking products[J]. Cellulose Chemistry and Technology, 2012, 46:389-400. [百度学术]
LI P, LIU H, HOU Q, et al. Preparation and Applications of Soybean Residue CNF Films[J]. Paper and Biomaterials, 2019, 4(3):45-53. [百度学术]
Du C, Li H L, Li B Y, et al. Characteristics and Properties of Cellulose Nanofibers Prepared by TEMPO Oxidation of Corn Husk[J]. BioResources, 2016, 11:5276-5284. [百度学术]
李美灿, 刘金刚, 陈京环, 等. 多孔性纳米纤维素膜的制备及应用综述[J]. 中国造纸,2019,38(9):59-68. [百度学术]
LI M C, LIU J G, CHEN J H, et al. Review on Preparation and Application of Cellulose Nanopaper with Porous Structure[J]. China Pulp & Paper, 2019, 38(9):59-68. [百度学术]
PARTHASARATHI R, BELLESIA G, CHUNDAWAT S, et al. Insights into Hydrogen Bonding and Stacking Interactions in Cellulose[J]. Journal of Physical Chemistry A, 2011, 115(49):14191-14202. [百度学术]
ABRAHAM E, DEEPA B, L POTHEN A, et al. Environmental friendly method for the extraction of coir fibre and isolation of nanofibre[J]. Carbohydrate Polymers, 2013, 92:1477-1483. [百度学术]
骆博雅, 曹海兵, 安兴业, 等. 非木材纤维纳米纤维素的制备和应用进展[J]. 中国造纸,2020,39(9):76-85. [百度学术]
LUO B Y, CAO H B, AN X Y, et al. Advance in the Preparation and Applications of Non-wood Based Nanocellulose[J]. China Pulp & Paper, 2020,39(9):76-85. [百度学术]
PANTHAPULAKKAL S, SAIN M. Preparation and Characteri⁃zation of Cellulose Nanofibril Films from Wood Fibre and Their Thermoplastic Polycarbonate Composites[J]. International Journal of Polymer Science, doi:10.1155/2012/381342. [百度学术]
ZHANG K T, SUN P P, LIU H, et al. Extraction and comparison of carboxylated cellulose nanocrystals from bleached sugarcane bagasse pulp using two different oxidation methods[J]. Carbo⁃hydrate Polymers, 2016, 138:237-243. [百度学术]
SEGAL L, CREELY J, MARTIN A, et al. An Empirical Method for Estimating the Degree of Crystallinity of Native Cellulose Using the X-Ray Diffractometer[J]. Textile Research Journal, 1959, 29(10):786-794. [百度学术]
YANG X, BERTHOLD F, BERGLUND L A. High-Density Molded Cellulose Fibers and Transparent Biocomposites Based on Oriented Holocellulose[J]. ACS Applied Materials & Interfaces, 2019, 11:10310-10319. [百度学术]
CHEN W S, YU H P, LIU Y X, et al. Isolation and characterization of cellulose nanofibers from four plant cellulose fibers using a chemical-ultrasonic process[J]. Cellulose, 2011, 18:433-442. [百度学术]
ALEMDAR A, SAIN M. Isolation and characterization of nanofibers from agricultural residues-Wheat straw and soy hulls[J]. Bioresource Technology, 2008, 99:1664-1671. [百度学术]
SUN X F, XU F, SUN R C, et al. Characteristics of degraded cellulose obtained from steam-exploded wheat straw[J]. Carbohyd⁃rate Research, 2005, 340:97-106. [百度学术]
GAO Z X, MA M L, ZHAI X L, et al. Improvement of chemical stability and durability of superhydrophobic wood surface via a film of TiO2 coated CaCO3 micro-/nano-composite particles[J]. Rsc Advances, 2015, 5:63978-63984. [百度学术]
祁明辉, 易 锬, 莫 琪, 等. 硫酸水解辅助高压均质法制备小麦秸秆纳米纤维素[J]. 中国造纸学报, 2020, 35(3):1-8. [百度学术]
QI M H, YI T, MO Q, et al. Preparation of Wheat Straw Nanocellulose by Acid Hydrolysis Assisted High Pressure Homogenization[J]. Transactions of China Pulp and Paper, 2020, 35(3):1-8. [百度学术]
ABEER A, AMIRA E S, ATEF I, et al. Extraction of oxidized nanocellulose from date palm (Phoenix Dactylifera L.) sheath fibers: Influence of CI and CII polymorphs on the properties of chitosan/bionanocomposite films[J]. Industrial Crops and Products, 2018, 124:155-165. [百度学术]
FARADILLA R H F, LEE G, RAWAL A, et al. Nanocellulose characteristics from the inner and outer layer of banana pseudo-stem prepared by TEMPO-mediated oxidation[J]. Cellulose, 2016, 23:3023-3037. [百度学术]
SUN X X, WU Q L, REN S X, et al. Comparison of highly transparent all-cellulose nanopaper prepared using sulfuric acid and TEMPO-mediated oxidation methods[J]. Cellulose, 2015, 22:1123-1133. [百度学术]
ILYAS R A, SAPUAN S M, ISHAK M R, et al. Development and characterization of sugar palm nanocrystalline cellulose reinforced sugar palm starch bionanocomposites[J]. Carbohydrate Polymers, 2018, 202:186-202. [百度学术]
DAICHO K, SAITO T, FUJISAWA S, et al. The Crystallinity of Nanocellulose: Dispersion-Induced Disordering of the Grain Boundary in Biologically Structured Cellulose[J]. ACS Applied Nano Materials, 2018, 1:5774-5785. [百度学术]
LI W, YUE J Q, LIU S X. Preparation of nanocrystalline cellulose via ultrasound and its reinforcement capability for poly(vinyl alcohol) composites[J]. Ultrasonics Sonochemistry, 2012, 19:479-485. [百度学术]
MORAN J I, ALVAREZ V A, CYRAS V P, et al. Extraction of cellulose and preparation of nanocellulose from sisal fibers[J]. Cellulose, 2008, 15:149-159. [百度学术]
JIA W, LIU Y. Two characteristic cellulose nanocrystals (CNCs) obtained from oxalic acid and sulfuric acid processing[J]. Cellulose, 2019, 26:8351-8365. [百度学术]
SHEN D K, GU S J B T. The mechanism for thermal decomposition of cellulose and its main products[J]. Bioresource Technology, 2009, 100(24):6496-6504. [百度学术]
ROMAN M, WINTER W T. Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose[J]. Biomacromolecules, 2004, 5:1671-1677. [百度学术]
FUKUZUMI H, SAITO T, OKITA Y, et al. Thermal stabilization of TEMPO-oxidized cellulose[J]. Polymer Degradation and Stability, 2010, 95:1502-1508. [百度学术]
HU S X, GU J, JIANG F, et al. Holistic Rice Straw Nanocellulose and Hemicelluloses/Lignin Composite Films[J]. ACS Sustainable Chemistry & Engineering, 2016, 4:728-737. CPP [百度学术]