摘要
纤维素作为世界上来源最广、含量最丰富的可降解、可再生绿色材料,其研究价值显而易见。近年来,基于纤维素材料的气敏传感器研究受到了国内外学者的广泛关注,并取得了长足的进展。本文主要介绍了基于纳米纤维素及其复合材料的气敏传感器制备方法。同时,对基于纳米纤维素材料的气敏传感器在环境监测、医疗卫生、食品安全领域的应用进行了分析和总结。
近年来,我国经济呈现飞跃式增长,但同时随之而来对环境的破坏也不容忽视,其中气体污染就是环境污染的主要种类之一。由于污染气体的处理不当,已经造成了全球气候变暖、臭氧层被破坏、酸雨等多种环境问
同时,随着技术水平的提高和研究的不断深入,体积小、操作方便、性能优异的可穿戴传感器逐渐走入人们的视野。柔性基底作为可穿戴气敏传感器的主要组成结构,需要轻薄、透明、柔性和拉伸性好、绝缘耐腐蚀等良好性能。目前大多采用硅橡胶,聚二甲基硅氧烷等作为柔性基底材料,其大多不可降解或不可再生,对环境污染造成了极大影响。因此,绿色可降解材料的研究将是柔性可穿戴传感器未来的主要方向之一。植物纤维是由纤维素与各种营养物质结合生成丝状或者絮状物,广泛存在于植物秆茎、根系、果实、果壳中。同时,纤维素还具有易于化学改性、可再生降解、生物相容性好等优良特性,对其应用进行研究已成为近年来的热点。由于气敏传感器主要以纳米纤维素及其复合材料为基材制备所得,因此,本文主要介绍了基于纳米纤维素气敏传感器的制备方法,并围绕基于纤维素材料的气敏传感器在环境监测、医疗卫生及食品安全方面的研究及应用现状展开深入讨论及分析(如

图1 纤维素基材料气敏传感器在环境监测、医疗卫生及食品安全方面研究
Fig. 1 Research on cellulose-based gas sensors for environmental monitoring, health care and food safety
从气敏传感器的角度来看,纤维素材料在许多方面具有其独特的优势。将纤维素材料与导电聚合物或不同无机颗粒复合,在赋予纤维素基复合材料更高灵活性的同时,纤维素本身也可以进行化学改性,使其具备更多样化的气敏性能并应用于不同领
纤维素由结晶区和无定形区组成,酸水解法是通过强酸降解无定形区,破坏β-1,4-糖苷键,制备出高结晶度的纳米纤维素。Tang等
另外,值得注意的是,通过控制反应条件也可改变CNC的形貌和性能,如经H2SO4水解的细菌纤维素纳米晶体(BCNC)具有最小的晶粒尺寸、高Zeta电位值以及比表面积,被用于制备硫化氢气敏传感
纤维素酶是一种具有催化纤维素水解能力的复合酶,主要由内切聚葡萄糖酶、外切聚葡萄糖酶和β-葡萄糖苷酶组成。这些酶在纤维素水解过程中起协同作用,内切聚葡萄糖酶随机攻击并水解非晶态区域,而外切聚葡萄糖酶则与纤维素链的还原端或非还原端反应,破坏纤维素的结晶区;β-葡萄糖苷酶主要是直接作用于寡糖链和纤维二糖并将其水解为葡萄糖。然而,在反应过程中形成的纤维二糖可以吸附在外切聚葡萄糖酶的活性中心,避免了酶的过度水解,这种良好的效果为酶解CNC的生产提供了有利条件。Nechyporchuk等
TEMPO(2,2,6,6-四甲基哌啶-1-氧自由基)是一种典型的哌啶类氮氧自由基。在NaBr和NaClO的存在下,TEMPO可将纤维素C6位上的伯醇羟基选择性氧化成羧基。在碱性条件下,TEMPO氧化法通常伴有副反应发生,如醛基中间体的存在会使得纤维素纳米纤丝(CNF)的聚合度和热稳定性降低,柔韧性变差,在高温条件下CNF容易发生变色和降解。为了解决这些问题,Saito等
TEMPO法反应过程相对温和,污染小,该方法制得的纳米纤维素通常以CNF的形式存在,较其他方法制得的CNF具有宽度均匀、长径比大、结晶度高及分散性良好等优点。但TEMPO法氧化不完全,残留的金属离子对纳米纤维素的稳定性和吸附性有较大影响。
由以上对比可知,不同制备方法将影响纤维素材料的形貌及特性,从而进一步影响纤维素基材料的复合方法及其应用性能。
因为纤维素具有易降解、来源广等特点,使得纤维素材料被广泛应用于各大领域,对纤维素材料的性能要求也越来越高。单一的纤维素材料已不能满足应用需求,所以科学家们开始对纤维素材料进行改性研究,制备纤维素基复合材料,以提高其各项性能并用于气敏传感器的应用研究。接枝法就是其中广泛使用的1种。Espino-Pérez等
此外,自组装也是一种很有前景的制备纤维素基复合材料的方法。喻丽莎等
现如今,环境问题愈加严重,大气污染也越来越受到人们的广泛关注。因此,用于监测环境中有害气体的纤维素基气敏传感器也因此应运而生。硫化氢是一种高剧毒、致命性的恶臭污染气体,由于低浓度时具有臭鸡蛋气味被人们熟知。此外,硫化氢气体会损害人类的呼吸和神经系统,有可能在浓度低至几百分之一时导致死亡。因此,需要提高硫化氢传感器在灵敏度、选择性、响应时间、功耗和成本
Sukhavattanakul等
另外,Hittini等
除硫化氢外,氨气也是一种需要关注的环境监测气体。氨气对于人体组织和免疫系统都有害,能灼伤皮肤、眼睛、呼吸器官的粘膜,人吸入过多,容易引起肺肿胀,甚至死亡。目前,氨气传感器具有低灵敏度、高价和便携性等局限性,需要开发高性能、环保型、制备工艺简单可行的可穿戴氨气传感器。不同可穿戴气敏传感器的结构图、实物图及监测过

图2 不同可穿戴气敏传感器的结构图、实物图及监测过程
Fig. 2 Structural and physical diagrams of different wearable gas sensors and monitoring processes
注 (a)BC/PANI-SSA/PAMPS复合材料制备示意
纳米纤维素具有直径小、比表面积大等许多优良特性,有助于提高传感器的传感性能。Pang等
另外,由于CNC具有高机械强度、光学、热性能、低密度、可再生等优点,CNC非常适合于生产轻质、高强度的纳米复合材料。Tong等
在化石燃料燃烧释放的空气污染物中,二氧化氮气体会导致人类严重的呼吸系统问题,还会导致酸雨。同时,二氧化氮与其他氮氧化物还可作为二次空气污染物的前体,如甲醛、臭氧、烟雾
除以上几种气体外,长期暴露于低水平的甲醛可能会引起慢性呼吸道疾病、鼻咽癌等疾病,还有可能会导致头痛、记忆丧失、肺水肿等症状。Wang等
呼吸气体分析是一种通过监测呼出空气中存在的挥发性有机化合物来获取个体临床状态信息的方法,可以通过与疾病监测有关的柔性湿度传感器和与早期疾病诊断有关的化学气敏传感器来实现非植入式的身体健康管
Ⅱ型糖尿病是最常见的糖尿病类型,而呼吸中的丙酮是Ⅱ型糖尿病的一种生物标志物。Yempally等
湿度传感器是检测湿度变化的重要工具,还适用于人类呼吸的实时监测。Zhu等

图3 基于纤维素复合材料的可穿戴湿度传感器结构及检测信号
Fig. 3 Structure and detection signal of a wearable humidity sensor based on cellulose composites
注 (a) CNF/CNT湿度传感器在人体呼吸监测中的应用示意
另外,人体呼吸中氨的含量是人体活动和代谢的重要生理指标。Gao等
新鲜食品的变质过程与微生物生长和生化变化有关。食品变质的机制和变质早期阶段的挥发性有机化合物的释放取决于食品的类型。因此,监测食品中所释放气体的种类及浓度是控制食品质量的一个快速而有效的方
水果的成熟度是水果其他品质检测的前提条件,水果在成熟之际通常会散发出芳香气体。侯俊
检测食品变质气体释放过程的比色气敏传感器对食品安全和食品保护具有重要意义。然而,这种传感器并没有被广泛实施,因为它们与食品包装不相兼容,而且在食品储存的低温条件下无法正常运
Nguyen等

图4 比色传感器的检测过程
Fig. 4 Detection process of colourimetric sensors
注 (a) EGS-10在不同pH值的溶液中的颜色反
基于以上对各种基于纤维素复合材料的气敏传感器的讨论及分析,为了更直观的对比不同传感器性能,对气敏传感器各方面主要参数进行统计,如
注 PPy:聚吡咯;IL:甘油;WO3:三氧化钨;CA:醋酸纤维素;CMC:羟甲基纤维素;CuO:氧化铜;BC:细菌纤维素;PANI:聚苯胺;SSA:磺基水杨酸;PAMPS:聚(2-丙烯酰胺-2-甲基-1-丙烷磺酸);CNC:纤维素纳米晶体;PEI:聚乙烯亚胺;EC:乙基纤维素;Zn2L2:双核锌(Ⅱ)螺旋体;P66614Cl:三己基(四烷基)氯化膦;Ig:有硫化氢气体时的电流;I0:传感器在空气中测量的参考电流;Ra:空气中气敏传感器的电阻值;Rg:氨气体存在的电阻值;R:二氧化氮气体存在时的电阻值;R0:在纯N2存在时测量的初始电阻。
纤维素基材料作为重要的新型材料,以其独特的优势在电子器件和环保领域展现出诸多优势。近年来,研究人员在纳米纤维素制备及纤维素基气敏传感器在环境监测、医疗卫生、食品安全等方面的应用研究中取得了巨大的进展,必定会持续发展并显示出诱人的前景。然而,纤维素基气敏传感器的研究仍然面临以下问题。
(1)需要继续研究绿色、节能、高效的纤维素基材料制备方法。另外,纤维素基材料目前难以实现大规模产业化,以满足日常生产与生活的实际应用需求。
(2)工作温度高,传感器需要加热及控温装置,增加了气敏传感器的结构复杂性,不满足日常可穿戴需求。
(3)灵敏度低,响应恢复时间长。当目标气体的浓度在1
为了实现纤维素基气敏传感器在生活中的广泛应用,还得加强产品的功能性与实用性,因此对纤维素基材料的制备、改性、复合与气敏性能探索将成为未来相关研究的突破和发展方向。
参考文献
FRANK R, NICOLAE B, UDO W. Electronic Nose: Current Status and Future Trends[J]. Chemical Reviews, 2008, 108(2): 705-725. [百度学术]
刘 莹. 基于氧化镍p-n异质结的丙酮气敏传感器和室温湿敏传感器研究[D]. 吉林: 吉林大学, 2020. [百度学术]
LIU Y. Study of Acetone Gas Sensor and Room-temperature Humidity Sensor Based on Nickel Oxide p-n Heterojunction[D]. Jilin: Jilin University, 2020. [百度学术]
杨 斌, 文 震. 气体传感器技术研究与应用[J]. 科技中国, 2020(6): 12-17. [百度学术]
YANG B, WEN Z. Gas Sensor Technology Research and Application[J]. Science and Technology in China, 2020(6): 12-17. [百度学术]
于梦贤, 薛光宇, 王浩任, 等. 碳纤维的合成及应用研究进展[J]. 山东化工, 2019, 48(15): 65-66. [百度学术]
YU M X, XUE G Y, WANG H R, et al. Progress in Synthesis and Application of Carbon Fiber[J]. Shandong Chemical Industry, 2019, 48(15): 65-66. [百度学术]
UMMARTYOTIN S, MANUSPIYA H. A Critical Review on Cellulose: from Fundamental to an Approach on Sensor Technology[J]. Renewable and Sustainable Energy Reviews, 2015, 41: 402-412. [百度学术]
Liu D Y, Sui G X, Bhattacharyya D. Synthesis and Characterisation of Nanocellulose-based Polyaniline Conducting Films[J]. Composites Science and Technology, 2014, 99: 31-36. [百度学术]
TANG Y, XU X, DU H, et al. Cellulose Nano-crystals as a Sensitive and Selective Layer for High Performance Surface Acoustic Wave HCl Gas Sensors[J]. Sensors and Actuators A: Physical, doi:10.1016/j.sna.2019.111792. [百度学术]
DU H S, LIU C, MU X D, et al. Preparation and Characterization of Thermally Stable Cellulose Nanocrystalsvia a Sustainable Approach of FeCl3-catalyzed Formic Acid Hydrolysis[J]. Cellulose, 2016, 23(4): 2389-2407. [百度学术]
XU W Y, GRENMAN H, LIU J, et al. Mild Oxalic-Acid-Catalyzed Hydrolysis as a Novel Approach to Prepare Cellulose Nanocrystals[J]. ChemNanoMat, 2017, 3(2): 109-119. [百度学术]
SUKHAVATTANAKUL P, MANUSPIYA H. Fabrication of Hybrid Thin Film Based on Bacterial Cellulose Nanocrystals and Metal Nanoparticles with Hydrogen Sulfide Gas Sensor Ability[J]. Carbohydrate Polymers, doi:10.1016/j.carbpol.2019.115566. [百度学术]
SADASIVUNI K K, PONNAMMA D, KO H U, et al. Flexible NO2 Sensors from Renewable Cellulose Nanocrystals/Iron Oxide Composites[J]. Sensors and Actuators B: Chemical, 2016, 233: 633-638. [百度学术]
ZHAO G, ZHANG Y, ZHAI S, et al. Dual Response of Photonic Films with Chiral Nematic Cellulose Nanocrystals: Humidity and Formaldehyde[J]. ACS Applied Materials & Interfaces, 2020, 12(15): 17833-17844. [百度学术]
JIANG X,HUBBE M A. Green Modification of Cellulose Nanocrystals and Their Reinforcement in Nanocomposites of Polylactic Acid[J]. Paper and Biomaterials, 2018, 3(4): 10-18. [百度学术]
NECHYPORCHUK O, PIGNON F, BELGACEM M N, et al. Morphological Properties of Nanofibrillated Cellulose Produced Using Wet Grinding as an Ultimate Fibrillation Process[J]. Journal of Materials Science, 2015, 50(2): 531-541. [百度学术]
CHEN X Q, DENG X Y, SHEN W H, et al. Preparation and Characterization of the Spherical Nanosized Cellulose by the Enzymatic Hydrolysis of Pulp Fibers[J]. Carbohydrate Polymers, 2018, 181: 879-884. [百度学术]
MEYABADI T F, DADASHIAN F, SADEGHI G M M, et al. Spherical Cellulose Nanoparticles Preparation from Waste Cotton Using a Green Method[J]. Powder Technology, 2014, 261: 232-240. [百度学术]
SAITO T, HIROTA M, TAMURA N, et al. Individualization of Nano-sized Plant Cellulose Fibrils by Direct Surface Carboxylation Using TEMPO Catalyst under Neutral Conditions[J]. Biomacromolecules, 2009, 10: 1992-1996. [百度学术]
CAO X W, DING B, YU J Y, et al. Cellulose Nanowhiskers Extracted from TEMPO-oxidized Jute Fibers[J]. Carbohydrate Polymers, 2012, 90(2): 1075-1080. [百度学术]
吴 波, 邵发宁, 何 文, 等.TEMPO氧化纤维素纳米纤丝对多壁碳纳米管分散性的影响[J]. 复合材料学报, 2019, 36(9): 2212-2219. [百度学术]
WU B, SHAO F N, HE W, et al. Dispersion Effect of TEMPO oxidized Cellulose Nanofibrils on Multi-walled Carbon Nanotubes[J]. Acta Materials Composite Sinica, 2019, 36(9): 2212-2219. [百度学术]
SHAHI N, LEE E, MIN B, et al. Rice Husk-derived Cellulose Nanofibers: A Potential Sensor for Water-soluble Gases[J]. Sensors, doi:10.3390/s21134415. [百度学术]
ESPINO-PÉREZ E, DOMENEK S, BELGACEM N, et al. Green Process for Chemical Functionalization of Nanocellulose with Carboxylic Acids[J]. Biomacromolecules, 2014, 15: 4551-4560. [百度学术]
SHANG W L, HUANG J, LUO H, et al. Hydrophobic Modification of Cellulose Nanocrystal via Covalently Grafting of Castor Oil[J]. Cellulose, 2013, 20(1):179-190. [百度学术]
PELTZER M, PEI A H, ZHOU Q, et al. Surface Modification of Cellulose Nanocrystals by Grafting with Poly(Lactic Acid)[J]. Polymer International, 2014, 63(6): 1056-1062. [百度学术]
AZZAM F, HEUX L, PUTAUX J L, et al. Preparation by Grafting onto, Characterization, and Properties of Thermally Responsive Polymer-decorated Cellulose Nanocrystals[J]. Biomacromolecules, 2010, 11(12): 3652-3659. [百度学术]
YANG L, XU X, LIU M, et al. Wearable and Flexible Bacterial Cellulose/Polyaniline Ammonia Sensor Based on a Synergistic Doping Strategy[J]. Sensors and Actuators B: Chemical, doi:10.1016/j.snb.2021.129647. [百度学术]
YANG X P, KU T H, BISWAS S K, et al. UV Grafting: Surface Modification of Cellulose Nanofibers without the Use of Organic Solvents[J]. Green Chemistry, 2019, 21: 4619-4624. [百度学术]
喻丽莎, 康艳辉, 何 琛, 等. 氨基改性纤维素纳米晶体的自组装行为研究[J]. 高分子学报, 2020, 51(8): 921-932. [百度学术]
YU L S, KANG Y H, HE C, et al. Self-assembly Behavior of Amino Modified Cellulose Nanocrystals[J]. Acta Polymerica Sinica, 2020, 51(8): 921-932. [百度学术]
冯伟丽, 康兴隆, 柳 妍, 等. 层层自组装改性剑麻纤维填充聚丙烯复合材料性能研究[J]. 材料导报, 2021, 35(10): 10211-10215. [百度学术]
FENG W L, KANG X L, LIU Y, et al. Properties of Polypropylene Composites Filled with Layer-by-layer Assembly Modified Sisal Fiber[J]. Materials Reports, 2021, 35(10): 10211-10215. [百度学术]
JIA Y, YU H, ZHANG Y. et al. Cellulose Acetate Nanofibers Coated Layer-by-layer with Polyethylenimine and Graphene Oxide on a Quartz Crystal Microbalance for Use as a Highly Sensitive Ammonia Sensor[J]. Colloids and Surfaces B: Biointerfaces, 2016, 148: 263-269. [百度学术]
刘力文. 基于TDLAS技术危险气体泄露检测[D]. 天津: 天津工业大学, 2017. [百度学术]
LIU L W. Hazardous Gas Leak Detection Based on TDLAS Technology[D].Tianjin: Tiangong University, 2017. [百度学术]
SUKHAVATTANAKUL P, MANUSPIYA H. Fabrication of Hybrid Thin Film Based on Bacterial Cellulose Nanocrystals and Metal Nanoparticles with Hydrogen Sulfide Gas Sensor Ability[J]. Carbohydrate Polymers, doi:10.1016/j.carbpol.2019.115566. [百度学术]
ABDEL R N S, GREISH Y E, MAHMOUD S T, et al. Fabrication and Characterization of Cellulose Acetate-based Nanofibers and Nanofilms for H2S Gas Sensing Application[J]. Carbohydrate Polymers, doi:10.1016/j.carbpol.2021.117643. [百度学术]
HITTINI W, ABU-HANI A F, REDDY N, et al. Cellulose-copper Oxide Hybrid Nanocomposites Membranes for H2S Gas Detection at Low Temperatures[J]. Scientific Reports, 2020, 10: 2940-2949. [百度学术]
PANG Z Y, YANG Z P, CHEN Y, et al. A Room Temperature Ammonia Gas Sensor Based on Cellulose/TiO2/PANI Composite Nanofibers[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 494: 248-255. [百度学术]
TONG X, ZHANG X J, LI J, et al. Flexible NH3 Gas Sensor Based on TiO2/Cellulose Nanocrystals Composite Film at Room Temperature[J]. Journal of Materials Science: Materials in Electronics, 2021, 32: 23566-23577. [百度学术]
DAI S D, PREMPEH N, LIU D G, et al. Cholesteric Film of Cu(II)-doped Cellulose Nanocrystals for Colorimetric Sensing of Ammonia Gas[J]. Carbohydrate Polymers, 2017, 174: 531-539. [百度学术]
MANE A T, NAVALE S T, SEN S, et al. Nitrogen Dioxide(NO2) Sensing Performance of p-polypyrrole/n-tungsten Oxide Hybrid Nanocomposites at Room Temperature[J]. Organic Electronics, 2014, 16: 195-204. [百度学术]
JEONG H Y, LEE D S, CHOI H K, et al. Flexible Room-temperature NO2 Gas Sensors Based on Carbon Nanotubes/Reduced Graphene Hybrid Films[J]. Applied Physics Letters, doi:10.1063/1.3432446. [百度学术]
SADASIVUNI K K, PONNAMMA D, KO H U, et al. Flexible NO2 Sensors from Renewable Cellulose Nanocrystals/Iron Oxide Composites[J]. Sensors and Actuators B: Chemical, 2016, 233: 633-638. [百度学术]
WANG J L, GUO Y L, LONG G D, et al. Integrated Sensing Layer of Bacterial Cellulose and Polyethyleneimine to Achieve High Sensitivity of ST-cut Quartz Surface Acoustic Wave Formaldehyde Gas Sensor[J]. Journal of Hazardous Materials, doi:10.1016/j.jhazmat.2019.121743. [百度学术]
TAI H L, WANG S, DUAN Z H, et al. Evolution of Breath Analysis Based on Humidity and Gas Sensors: Potential and Challenges[J]. Sensors and Actuators B: Chemical, doi:10.1016/j.snb.2020.128104. [百度学术]
罗静怡, 孙鹏博, 丁艺佩, 等. 呼吸中的疾病诊断标志物及检测技术[J]. 现代生物医学进展, 2020, 21(6): 1196-1200. [百度学术]
LUO J Y, SUN P B, DING Y P, et al. Exhaled Breath Markers for Disease Diagnosis and Detection Technologies[J]. Progress in Modern Biomedicine, 2021, 21(6): 1196-1200. [百度学术]
YEMPALLY S, HEGAZY S M, ALY A, et al. Non-Invasive Diabetic Sensor Based on Cellulose Acetate/Graphene Nanocomposite[J]. Macromolecular Symposia, doi:10.1002/masy.202000024. [百度学术]
KSENOFONTOV A A, GUSEVA G B, STUPIKOVA S A, et al. Novel Zinc(II) Bis(Dipyrromethenate)-Doped Ethyl Cellulose Sensors for Acetone Vapor Fluorescence Detection[J]. Journal of Fluorescence, 2018, 28: 477-482. [百度学术]
APARICIO-MARTÍNEZ E, OSUNA V, DOMINGUEZ R B, et al. Room Temperature Detection of Acetone by a PANI/Cellulose/WO3 Electrochemical Sensor[J]. Journal of Nanomaterials, 2018(30): 1-9. [百度学术]
ZHU P H, LIU Y, FANG Z Q, et al. A Flexible and Highly Sensitive Humidity Sensor Based on Cellulose Nanofibers and Carbon Nanotubes Composite Film[J]. Langmuir: The ACS Journal of Surfaces and Colloids, 2019, 35(14): 4834-4842. [百度学术]
GÜDER F, AINLA A, REDSTON J, et al. Paper-based Electrical Respiration Sensor[J]. Angewandte Chemie, 2016, 55: 5727-5732. [百度学术]
GAO L F, YANG X, SHU Y, et al. Ionic Liquid-based Slab Optical Waveguide Sensor for the Detection of Ammonia in Human Breath[J]. Journal of Colloid and Interface Science, 2018, 512: 819-825. [百度学术]
MATINDOUST S, FARZI G, NEJAD M B, et al. Polymer-based Gas Sensors to Detect Meat Spoilage: A Review[J]. Reactive and Functional Polymers, doi:10.1016/j.reactfunctpolym.2021.104962. [百度学术]
侯俊才. QCM气敏传感器研发与香蕉成熟度检测方法研究[D]. 西安: 西北农林科技大学, 2014. [百度学术]
HOU J C. Development of Gas Sensor Based on QCM and Detection of Banana Ripeness[D]. Xi’an: Northwest A&F University, 2014. [百度学术]
WEN T, SANG M X, WANG M L, et al. Rapid Detection of D-limonene Emanating from Citrus Infestation by Bactrocera Dorsalis (Hendel) Using a Developed Gas-sensing System Based on QCM Sensors Coated with Ethyl Cellulose[J]. Sensors and Actuators: B. Chemical, doi:10.1016/j.snb.2020.129048. [百度学术]
CHAYAVANICH K, THIRAPHIBUNDET P, IMYIM A. Biocompatible Film Sensors Containing Red Radish Extract for Meat Spoilage Observation[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, doi:10.1016/j.saa.2019.117601. [百度学术]
HUANG S T, LIU X H, CHANG C Y, et al. Recent Developments and Prospective Food-related Applications of Cellulose Nanocrystals: A Review[J]. Cellulose, 2020, 27: 2991-3011. [百度学术]
MA Q Y, WANG L J. Preparation of a Visual pH-sensing Film Based on Tara Gum Incorporating Cellulose and Extracts from Grape Skins[J]. Sensors and Actuators B, 2016, 235: 401-407. [百度学术]
NGUYEN L H, NAFICY S, MCCONCHIE R, et al. Polydiacetylene-based Sensors to Detect Food Spoilage at Low Temperatures[J]. Journal of Materials Chemistry C, 2019, 7(7): 1919-1926. [百度学术]