摘要
本研究采用简单的路易斯酸水热预处理和高温热解制备了具有Co-N活性中心的钴氮掺杂木质衍生碳基双功能催化剂(CoHNC),并对其结构与性能进行研究。结果表明,路易斯酸(CoCl2)可以部分水解木材中的纤维素和半纤维素,在细胞壁上形成丰富的微介孔,所得碳材料比表面积高达1 008.02
锌-空气电池(zinc-air batteries,ZABs)被认为是最具潜力的下一代电化学储能体系之一,具有能量密度高、安全性高和生态友好等优
木材具有资源丰富、绿色可再生等优点,由木材衍生的生物质碳材料因其高稳定性、高导电性和良好的多孔结构而受到广泛关
本研究采用路易斯酸水热预处理和高温热解制备了一种木质衍生过渡金属基双功能催化剂。路易斯酸可以部分水解木材中的纤维素和半纤维素,在细胞壁上留下丰富的孔隙,增强碳化木材的分级多孔结构。此外,水解后木材表面含有丰富的含氧官能团,增加了其对金属离子的吸附和配位能力,进而在后续热解中获得Co-N活性位点,木质衍生碳的独特结构也对电解质/氧气等物质的扩散及高密度活性位点的暴露提供了有利条件。
榉木粉(粒径74 μm);无水氯化钴(CoCl2)、氯化铵(NH4Cl),均购自阿拉丁试剂(上海)有限公司;乙醇、氢氧化钾(KOH),均购自广州化学试剂厂;Nafion(质量分数5%)、商用Pt/C和RuO2,均购自Sigma-Aldrich;氧气(O2,纯度99.999%)、氮气(N2,纯度99.999%),均购自广州卓正气体公司。
管式炉(OTF-1200X,合肥科晶材料技术有限公司);电热鼓风干燥箱(WGL-45B,菲斯福仪器有限公司);电化学工作站(CHI 760E,上海辰华仪器有限公司);场发射扫描电子显微镜(FESEM,Merlin,德国Zeiss);透射电子显微镜(TEM,JEM-2100F,日本电子);X射线光电子能谱仪(XPS,Thermo Science ESCALAB 250Xi,美国赛默飞);X射线衍射仪(XRD,X’pert Powder,荷兰PANalytical);拉曼光谱仪(Raman,Labram Aramis-Horiba Jobin Yvon,德国Bruker);氮气等温吸脱附仪(Micromeritics ASAP 2460,Porosimetry Analyzer,美国麦克);傅里叶变换红外光谱仪(FT-IR,VERTEX 70,德国Bruker)。
将0.5 g无水CoCl2溶于40 mL的去离子水中,剧烈搅拌30 min,取1 g洗净的榉木粉浸入溶液中并在真空箱中静置30 min,随后将溶液转移至100 mL高压反应釜中,置于水热烘箱中150 ℃保温6 h。待反应结束后,将高压反应釜自然冷却至室温,并将所得固体用去离子水和乙醇洗涤以除去可溶性杂质,剩余固体冷冻干燥24 h。将冷冻干燥后的样品与NH4Cl按质量比1∶10充分研磨均匀,然后装于陶瓷坩埚中置于管式炉,在氮气保护下,以5 ℃/min的升温速率升至950 ℃,并保温2 h,所得碳化样品命名为钴氮掺杂木质衍生碳(CoHNC)。作为对比,未添加CoCl2通过上述方法制得样品,命名为水热木质碳(HNC)。
通过旋转圆盘电极技术(rotating disk electrode,RDE)及旋转环盘技术(rotating ring-disk electrode)对催化剂的ORR和OER电催化活性进行表征。利用电化学工作站进行循环伏安法(cyclic voltammetry,CV)、线性扫描伏安法(linear sweep voltammetry,LSV)等电化学实验。工作电极、对电极和参比电极分别为涂覆了电催化剂的玻碳(GC,S = 0.196 c
工作电极制备如下:将5 mg催化剂(对照组为商用Pt/C,质量分数20%)分散在1 mL无水乙醇溶液(含10 μL 质量分数5% Nafion)中超声处理成均匀悬浮液,取20 μL悬浮液滴在玻碳电极表面。0.1 mol/L KOH电解液在实验前通入N2或O2达到饱和状态。在N2或O2饱和环境中以10 mV/s的扫描速率记录CV曲线;在O2饱和环境中使用旋转圆盘电极以10 mV/s的扫描速率在400~2 025 r/min的不同转速下记录LSV曲线。
上述测试完成后,均由
(1) |
式中,EAg/AgCl是实时测量电位;E值为0.197 V。
根据不同转速下的LSV曲线,由
(2) |
(3) |
式中,j为实时电流密度;jk为动力学电流密度;B为常数;ω为环盘电极旋转的角速度;n为转移电子数;F为法拉第常数(96 485 C /mol);(1.13×1
根据1 600 r/min转速下的LSV曲线中的环电流和盘电流数据,由
(4) |
(5) |
式中,ID和IR分别为盘电流和环电流;N为铂环的收集效率,取值为0.37。
对CoHNC的微观结构进行表征,结果如

图1 CoHNC的FESEM图、TEM图和EDS图
Fig. 1 FESEM, TEM, and EDS images of CoHNC
注 (a)(b)为CoHNC在不同分辨率下的FESEM图;(c)(d)为CoHNC在不同分辨率下的TEM图;(e)(f)为CoHNC的能量色散X射线光谱图。

图2 CoHNC和HNC的结构性能
Fig. 2 Structural properties of CoHNC and HNC
由氮气等温吸脱附曲线
利用XPS研究CoHNC的化学组成和成键构型,结果如

图3 CoHNC的XPS谱图
Fig. 3 XPS spectra of CoHNC
利用循环伏安法(CV)和线性扫描伏安法(LSV)对CoHNC和HNC催化剂在0.1 mol/L KOH溶液中进行电化学性能测试,并将其与商用Pt/C催化剂对比,结果如

图4 CoHNC、HNC和Pt/C的ORR性能
Fig. 4 ORR properties of CoHNC, HNC, and Pt/C
为了进一步评价CoHNC的催化活性,在O2饱和环境下进行了不同转速下的LSV测试,如

图5 HNC和CoHNC的Tafel图、H2O2产率和转移电子数
Fig. 5 Tafel plot, H2O2 yield, and number of transferred electrons of HNC, CoHNC, and Pt/C
除ORR测试外,本研究还对催化剂的OER活性进行了表征,结果如

图6 CoHNC、HNC、Pt/C和RuO2的OER性能
Fig. 6 OER properties of CoHNC, HNC, Pt/C, and RuO2
作为ORR和OER催化剂,除了反应活性,耐久性同样重

图7 CoHNC、Pt/C和RuO2的ORR与OER稳定性
Fig. 7 ORR and OER catalytic stability of CoHNC, Pt/C, and RuO2
本研究采用简单的路易斯酸水热预处理和高温热解碳化制备了具有交联微通道且高比表面积的钴氮掺杂木质衍生碳催化剂(CoHNC)。
3.1 路易斯酸水热预处理可以部分水解木材中的纤维素和半纤维素,在热解后形成丰富的微介孔,所得碳材料比表面积高达1 008.02
3.2 活性中心的成功引入大幅提升了催化剂的氧还原反应(ORR)与氧析出反应(OER)性能,在0.1 mol/L KOH溶液中,ORR起始电位与半波电位分别达0.977 V和0.869 V,Tafel斜率仅为72.5 mV/dec;在10 mA/c
参考文献
ZHANG X, YANG Z, LU Z, et al. Bifunctional CoNx embedded graphene electrocatalysts for OER and ORR: A theoretical evaluation[J]. Carbon, 2018, 130: 112-119. [百度学术]
TANG C, WANG B, WANG H. F, et al. Defect engineering toward atomic Co—Nx—C in hierarchical graphene for rechargeable flexible solid Zn-air batteries[J]. Advanced Materials, DOI: 10. 1002/adma.201703185. [百度学术]
LI B Q, ZHAO C X, CHEN S, et al. Framework-porphyrin-derived single atom bifunctional oxygen electrocatalysts and their applications in Zn-air batteries[J]. Advanced Materials, DOI: 10. 1002/adma. 201900592. [百度学术]
SHAIK G P, JAYARAMAN B, NAM, H K, et al. Sustainable synthesis of Co@NC core shell nanostructures from metal organic frameworks via mechanochemical coordination self-assembly: An efficient electrocatalyst for oxygen reduction reaction[J]. Small, DOI: 10. 1002/smll. 201800441. [百度学术]
ZHOU Y, GAO G, KANG J, et al. Transition metal-embedded two-dimensional C3N as a highly active electrocatalyst for oxygen evolution and reduction reactions[J]. Journal of Materials Chemistry A, 2019, 7(19): 12050-12059. [百度学术]
SHEN M, HU W, DUAN C, et al. Cellulose nanofibers carbon aerogel based single-cobalt-atom catalyst for high-efficiency oxygen reduction and zinc-air battery[J]. Journal of Colloid and Interface Science, 2023, 629: 778-785. [百度学术]
SUN H, ZHAO M, MA C, et al. Construction of ultra-stable NiFe armored catalyst for liquid and flexible quasi-solid-state rechargeable Zn-air batteries[J]. Nano Research, 2023, 16(4): 4980-4986. [百度学术]
刘箐箐,吴德敏,沈梦霞,等. 芳纶纳米纤维基导电复合材料的发展与应用[J]. 中国造纸,2022, 41(4): 107-117. [百度学术]
LIU Q Q, WU D M, SHEN M X, et al. Development and Application of Aramid Nanofiber-based Conductive Composite Materials[J]. China Pulp & Paper, 2022, 41(4): 107-117. [百度学术]
NING F, SHAO M, XU S, et al. TiO2/graphene/NiFe-layered double hydroxide nanorod array photoanodes for efficient photoelectrochemical water splitting[J]. Energy & Environmental Science, 2016, 9(8): 2633-2643. [百度学术]
ZHANG L, TIAN Y, WANG Y, et al. Enhanced conversion of α-cellulose to 5-HMF in aqueous biphasic system catalyzed by FeCl3-CuCl2[J]. Chinese Chemical Letters, 2021, 32(7): 2233-2238. [百度学术]
LI G, YANG J, CHEN Y, et al. Design and Facile Synthesis of Highly Efficient and Durable Bifunctional Oxygen Electrocatalyst Fe-Nx/C Nanocages for Rechargeable Zinc-air Batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(45): 54032-54042. [百度学术]
ZHU H, LUO W, CIESIELSKI P N, et al. Wood-derived materials for green electronics, biological devices, and energy applications[J]. Chemical Reviews, 2016, 116(16): 9305-9374. [百度学术]
ALMASHHADANI A Q, LEH C P, CHAN S Y, et al. Nanocrystalline cellulose isolation via acid hydrolysis from non-woody biomass: Importance of hydrolysis parameters[J]. Carbohydrate Polymers, DOI: 10. 1016/j. carbpol. 2022. 119285. [百度学术]
CHAMBON F, RATABOUL F, PINEL C, et al. Cellulose hydrothermal conversion promoted by heterogeneous Brønsted and Lewis acids: Remarkable efficiency of solid Lewis acids to produce lactic acid[J]. Applied Catalysis B: Environmental, 2011, 105(1/2): 171-181. [百度学术]
陈 健,贾峰峰,谢 璠,等. 芳纶纳米纤维及其复合材料研究进展[J]. 中国造纸学报,2020, 35(3): 80-87. [百度学术]
CHEN J, JIA F F, XIE F, et al. Research Progress of Aramid Nanofibers and Their Composite Materials[J]. Transactions of China Pulp and Paper, 2020, 35(3): 80-87. [百度学术]
ZHAO Z, LI N, BHUTTO A W, et al. N-methyl-2-pyrrolidonium-based Brønsted-Lewis acidic ionic liquids as catalysts for the hydrolysis of cellulose[J]. Science China Chemistry, 2016, 59: 564-570. [百度学术]
WANG X, PENG L, XU N, et al. Cu/S-Occupation Bifunctional Oxygen Catalysts for Advanced Rechargeable Zinc-air Batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(47): 52836-52844. [百度学术]
XU L, DENG D, TIAN Y, et al. Dual-active-sites design of CoNx anchored on zinc-coordinated nitrogen-codoped porous carbon with efficient oxygen catalysis for high-stable rechargeable zinc-air batteries[J]. Chemical Engineering Journal, DOI: 10. 1016/j. cej. 2020. 127321. [百度学术]
CHEN Z, PENG X, CHEN Z, et al. Mass Production of Sulfur-tuned Single-atom Catalysts for Zn-air Batteries[J]. Advanced Materials, DOI: 10. 1002/adma. 202209948. [百度学术]
WANG X, CULLEN D A, PAN Y T, et al. Nitrogen-coordinated single cobalt atom catalysts for oxygen reduction in proton exchange membrane fuel cells[J]. Advanced Materials, DOI: 10. 1002/adma. 201706758. [百度学术]
高 昆,孙姣姣,沈梦霞,等. 基于纳米纤维素的电催化与储能材料的研究进展[J]. 中国造纸,2021, 40(2): 72-80. [百度学术]
GAO K, SUN J J, SHEN M X, et al. Research Progress in Electrocatalysis and Energy Storage Materials Based on Nanocellulose[J]. China Pulp & Paper, 2021, 40(2):72-80. [百度学术]
ZHAO Y, WANG S, LIN H, et al. Influence of a Lewis acid and a Brønsted acid on the conversion of microcrystalline cellulose into 5-hydroxymethylfurfural in a single-phase reaction system of water and 1,2-dimethoxyethane[J]. RSC Advances, 2018, 8(13): 7235-7242. [百度学术]
LIU X, WANG Z, WANG J, et al. Unsaturated cobalt-nitrogen atomic sites in necklace-like hairy fibers towards highly efficient oxygen electrocatalysis for flexible Zn-air battery[J]. Energy Storage Materials, DOI: 10. 1016/j. ensm. 2024. 103184. [百度学术]
LU X, YANG P, XU H, et al. Biomass derived robust Fe4N active sites supported on porous carbons as oxygen reduction reaction catalysts for durable Zn-air batteries[J]. Journal of Materials Chemistry A, 2023, 11(7): 3725-3734. [百度学术]
冯占雄,汪 云,马 强,等. 连续管道微波技术制备Pt/C催化剂及其氧还原性能[J]. 化工进展,2022, 41(12): 6377-6384. [百度学术]
FENG Z X, WANG Y, MA Q, et al. Preparation of Pt/C catalyst by continuous pipeline microwave technology and its oxygen reduction performance[J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6377-6384. [百度学术]