摘要
当前由于漏油事故以及工业油性废水污染,对环境以及人类健康造成严重危害,采取有效措施完成高效油水分离具有重要意义。相较于传统的机械法、过滤法带来的高能耗、不可回收性等问题,纤维素、壳聚糖等生物基油水分离材料凭借生物降解性、生物相容性和原材料丰富等独特优势受到诸多学者青睐。本文依据2D、3D生物基油水分离材料的制备方式不同,总结了近几年中通过浸涂、抽滤、静电纺丝等制备2D生物基油水分离材料的常见策略,并且分析了其对表面微纳米结构和表面能的调控机制。总结了定向冷冻、气泡法、溶液反应法等制备3D生物基油水分离材料方法带来的优势和缺陷。同时对各种材料及其制备方法和实际应用场景进行对比分析。最后讨论了生物基油水分离材料在合成和实际应用中存在的问题,并对未来更低碳环保、更高效分离、更强机械性能的生物基油水分离材料等挑战进行了展望。
随着人们生活水平的提升和工业发展需求,高耗能、二次污染严重的絮凝、机械分离等传统油水分离方式逐渐被摒
纤维素、壳聚糖等生物基材料作为自然界最丰富的生物质高分子聚合物,自身结构中富含亲水性羟基、氨基等反应活性位
近年来,采用优质生物质原料制备油水分离材料的研究已经有了诸多报道,但前者大部分集中于不同疏水改性方式的探讨,或者根据分离材料过滤型/吸附型的不同展开讨

图1 生物基油水分离材料及其制备方式
Fig. 1 Bio-based oil-water separation material and itspreparation method
制备方式 | 主要基础材料 | 缺点 | 优势 |
---|---|---|---|
浸涂 | 原生纤维 | 无法脱离改性材料的使用,常见硅烷类改性材料价格昂贵;表面浸涂无法精确定量,难以避免表面孔隙减少;难以控制表面孔径 | 简单易行,适用性广;改性材料稳定;易于产生表面微纳米结构,表面粗糙度相对较高;便于负载其他粒子,功能化多样 |
静电纺丝 | 纳米纤维 | 技术要求较高;纺丝材料尺寸有要求;纺丝前体溶剂化反应制备中难以避免晶区破坏 | 通过调节溶解度、黏度、表面张力等能够控制生物聚合,达到对孔径的精确控制;技术先进,工业化生产有良好前景 |
自组装 | 纳米材料 | 自组装过程难以控制,容易造成结构不均匀;自组装速率较慢,不适用于工业化生产 | 自组装过程可以凭借纤维间的弱相互作用自发完成;沉积过程具有分子级控制优点,能够建立有序结构 |
定向冷冻 | 纳米纤维 | 冰晶成型挤压纤维结构,导致原生纤维原本结构被破坏 | 构建气凝胶结构具有各向异性,方向有序带来优异回弹性 |
溶剂反应成型 | 纳米材料 | 无法精确控制反应过程,材料结构呈现无序状态;通常需要外部材料进行辅助,无法完全“绿色化” | 原生结构易于保持;纤维内部骨架连接牢固 |
基于分子筛原理的2D膜材料在油水分离领域展现出重要的应用价值,常见制备2D生物质油水分离材料方法主要有浸涂、静电纺丝、抽滤等。
浸涂法具有简单易行、适用性广、成本低等优势。通过直接将基底材料浸入溶液,相对简便的完成分子修饰、低表面能改性等。基于Wenzel和Cassie-Baxter模型,通常采用低表面能物质在表面进行化学修饰的同时增加粗糙度,减少固体和液体之间的直接接触,从而达到润湿性要求。Xue

图2 (a) 环境温度、湿度下DTS在纤维膜上反应;(b) 原始纸张和DTS@paper的SEM
Fig. 2 (a) DTS reaction on the fiber membrane under ambient temperature and humidity, (b) SEM images of the original paper and DTS@pape
生物基基底材料 | 改性材料 | 应对场景 | 乳液类型 | 分离效率/% | 油/水接触角/(°) | 通量/(L·( | 参考文献 |
---|---|---|---|---|---|---|---|
壳聚糖(CS) | 十八烷基胺 | 油水混合物 | 95 |
水接触角 157.5 | [38] | ||
纤维素(丝瓜络) | 硅烷偶联剂 | 油水混合物 | 98.1 |
水接触角 152.3 | 2 349 | [39] | |
纤维素滤纸 | 十二烷基三氯硅烷 | 油水混合物 | 96 |
水接触角 165 | 587 | [40] | |
棉织物(壳聚糖) |
二氧化钛 银纳米颗粒 | 油水混合物 | 99.6 |
水接触角 162 | 4 965 | [41] | |
纤维素膜 | Ni-Al LDH、十六烷基三甲氧基硅烷 | 油水混合物 | 99.5 |
水接触角 157 | 1 200 | [42] | |
聚丙烯腈(PAN) 醋酸纤维素(CA) | 油水乳液 | 水包蓖麻油 | 94±0.8% |
水下油接触角 157.5±1.24 | 6 000 | [43] | |
纤维素固酰(CSE) 聚偏氟乙烯(PVDF) | 油水乳液 | 氯仿包水 | 97.6 |
水接触角 155 | 2 715 | [44] | |
纳米纤维素膜 (CA) | LDH | 油水乳液 | 水包正己烷 | 98.93 |
水下油接触角 155 | 27 346 | [45] |
壳聚糖 |
壳聚糖包裹银纳米颗粒 海藻酸钠 | 油水乳液 | 水包甲苯 | 99.73 |
水下油接触角 150 | 874 | [46] |
壳聚糖 | 羟基化多壁碳纳米管静电自组装 | 油水乳液 | 水包石蜡油 | 99.32 |
水下油接触角 159 | 1 199.01 | [47] |
壳聚糖 | 戊二醛 | 油水乳液 |
水及水下油接触角 162.8 | [41] | |||
纤维素、壳聚糖 | 3-氨基丙基三乙氧基硅烷(APTES)、十八烷基三乙氧基硅烷(ODTES) | 混合物 | 99.5 | 23 692.69 | [48] |
上文所列举的油水分离材料往往采用长疏水链修饰基材表面,通过添加价格昂贵的硅烷材料形成疏水单层达到油水分离目的,却难以控制形成足够的粗糙结构。为此,Tan

图3 (a) 单向润湿、抗菌性超疏水织物制备示意
Fig. 3 (a) Schematic diagram of preparation of unidirectional wetting and antibacterial superhydrophobic fabri

图4 HDTMS修饰后生成具有花状微观形态的纤维
Fig. 4 HDTMS modified fiber film with floral micromorphology was generate
受纤维素分子间氢键影响,毫微米尺度原生纤维需要复杂化学试剂溶解,且在制备2D油水分离膜材料时,无法采取有效措施控制孔径。纳米纤维素不仅满足静电纺丝对尺寸的要求,而且纳米纤维素中氧原子负电性较高,使羟基在分子中表现出部分负电性,这种极性导致纳米纤维素在溶液中能够与水或者其他极性溶剂形成相互作用,因此具备良好的溶解性和分散性。Feng

图5 (a) AOPAN-RC复合纳米纤维膜的制
Fig. 5 (a) Preparation of AOPAN-RC composite nanofiber fil
Zhao

图6 (a) 3D分层LDH@DCA纳米纤维膜制备示意图; (b) d-CA 的SEM图; (c) DCA 的SEM图; (d) LDH@DCA-9DE的 SEM
Fig 6 (a) Schematic diagram of 3D layered LDH@DCA nanofiber film preparation; (b) SEM image of d-CA; (c) SEM image of DCA; (d) SEM image of LDH@DCA-9D
纤维素纳米衍生物比纤维素引入更多的带电基团,电静态旋转相对更加容易,静电纺丝作为相对成熟的工艺,通过调节溶剂中的溶解度、黏度和表面张力等条件控制生物聚合,达到对孔径的调控。但目前有实验表明,溶剂化反应在静电纺丝前体制备过程中也带来一定缺陷,如纤维进行酰化反应后,引入长链烷基碳氢化合物等操作破坏了原始纤维素分子之间的氢键,增加了非晶区域的面积,因此不可避免地导致纤维的热稳定性和结构性能的损失。
自组装也是制备层膜结构常见方式,并且具有沉积过程和膜结构分子级控制的优点,制备膜层间2D结构甚至比3D更加有序,在很多精细控制分子排列领域得到重要应用。常见的生物质高分子非常适合于自组装过程,生物质长链结构以及组装过程的自发性,成膜后分子层会形成微小结构和间隙,对生物质油水分离材料粗糙度产生有利影响,因此,近年来受到广泛重视。Li

图7 (a) 具有抗菌活性的油水分离用SA/CS-Ag@NM制备示意图;(b) SA/CS-Ag@NM对大肠杆菌和金黄色葡萄球菌的抑制
Fig. 7 (a) Diagram of preparation of SA/ CS-Ag@NM for oil-water separation with antibacterial activity, (b) the inhibition ratio ofSA/CS-Ag@NM to Escherichia coli and Staphylococcus aureu
Zhang

图8 (a) CMF-PVA织物制备示意
Fig. 8 (a) Schematic diagram of CMF-PVA fabric preparatio
抽滤成膜在制备传统2D膜材料中有着重要应用,但在成膜过程中难以调控孔径和孔隙率,往往不满足高效油水分离的要求。为此,Ling

图9 壳聚糖、纤维素、单宁酸混合制备机理
Fig. 9 Preparation mechanism diagram of chitosan, cellulose, and tannic acid mixtur
相对表面改性2D生物质油水分离材料,大量微孔和介孔的高孔隙率生物质3D材料具有更大的比表面积和吸附容量,并且开放的结构易于压缩和热处理,在后续吸附-脱附过程中易于收集,当前制备3D生物基油水分离材料方法一般为定向冷冻、气泡法、溶液反应成型
受到自然机理和生物学启发,定向冷冻生成的蜂窝层状模型在结构优化中起关键作用。相较于常规冷冻干燥获得的各向同性气凝胶,定向冷冻技术获得的各向异性气凝胶在宏观尺度上拥有有序方向性,在垂直于通道方向上具有优异弹性。Huang
Chen

图10 (a)含DTOS的CNF/PVA纳米纤维在定向冷冻过程中的变化
Fig. 10 (a) Variation diagram of CNF/PVA nanofibers containing DTOS during lyophilizatio
虽然定向冷冻技术在制备多孔气凝胶材料中效果明显,但由于纳米纤维具有一定的刚性,在冰晶形成过程中会导致纤维结构被挤压破坏。因此,Ke
基底材料 | 改性材料、方式 | 孔径 | 孔隙率/% | 分离效率/% | 油/水接触角/(°) | 吸附能力/(g· | 参考文献 |
---|---|---|---|---|---|---|---|
BC | MTMS 气相化学沉积 | 30 nm | 98~99 |
水接触角 146.4 |
二甲基硅油 177.54 | [51] | |
CNF/PVA | DTOS 水解 | 99.2 |
水接触角 152 |
有机溶剂 67~133 | [53] | ||
CNF | PDMS 中和热处理 | 50 μm | 98.4 | 99.9 |
水接触角 163.5 |
有机溶剂 24~48 | [52] |
BC | MTMS 气相化学沉积 | 1~130 nm | 99.1 |
水接触角 120 |
有机溶剂 65~156 | [57] | |
纤维素CS | 质子化处理 | 99.90 |
水下油接触角 158.9±1.9 |
低黏度油 17.3 | [58] | ||
CS | 超声微气泡 | 25~260 μm | 97.6 | 91.0 |
水下油接触角 148±2.5 |
水 4 630 | [59] |
CS | 二氧化硅自聚合 | 20~80 nm | 90~95 |
水接触角 134.7 |
四氯化碳 10 | [60] |
面对高黏度油时,普通的硅烷化处理油水分离材料往往容易被严重污染,丧失处理能力。常见的两种方法为加热降低油的黏性或者建立坚固水化层,防止油黏附在表面。Huang

图11 纤维素气凝胶@PPNC-CS的制备示意
Fig. 11 Schematic diagram of preparation of cellulose aerogel @PPNC-C
多孔壳聚糖基固体材料通常通过微流体辅助气泡模板和自发起泡模板制造,但由于无序孔相互连接、耗时的生产速度和添加冒泡剂的缺点限制了壳聚糖气凝胶的广泛应用。为解决以上问题,Wang

图12 (a) 通过微气泡模板技术制备多孔壳聚糖气凝胶;(b) MCS气凝胶对水不混溶油相和铜的分离机理示意
Fig. 12 (a) Preparation of porous chitosan aerogel by microbubble template technology, (b) schematic diagram of the separationmechanism of water immiscible oil phase and copper by MCS aeroge
生物质材料在某些条件下,由于其内部分子间相互作用(如范德华力、氢键等),能够自发形成聚合体。但常见生物质通常形成无序的聚集体或聚集态,难以实现有序孔径调控,因此,通常需要添加外来材料或优化制备工艺,在溶剂反应中提供有序自聚合条件。Huang

图13 (a) NM/RCA制备示意
Fig. 13 (a) Schematic diagram of NM/RCA preparatio
生物基材料作为来源广泛、可再生和可生物降解的环保材料,在处理油水分离领域展现出不可替代的优势。但因其各种原料、制备方式不同,在实际生产应用中依旧有着局限性。
3.1 纤维素作为生物基材料的代表,原生纤维通常需要复杂溶剂进行溶解,而且表面孔径无法简易化一步调控;而采用溶剂反应达到改性的纤维素材料,却又因其本身结构完整性破坏而导致机械性和灵活性下降;对纤维素框架进行表面复合、掺杂等措施,难免表面微观多孔结构被覆盖,尤其对于孔隙率主导的气凝胶吸附,吸附分离能力将会大打折扣。
3.2 壳聚糖在解决环境污染问题上也具有独特的优势。但壳聚糖在水中的溶解度、干燥后高度收缩和高极性,均对其作为基础模版材料或者支撑材料产生不利影响;纯化壳聚糖2D膜材料的致密性难以完成高通量油水分离;传统壳聚糖气凝胶通常呈现无序层状构造,层状光滑表面层滑移通常导致结构崩溃和弹性差,而过度使用交联剂虽然能够达到结构稳定,却又间接导致后续回收困难,该问题同样存在于其他生物质材料中。
因此,本文提及的一些方法能够相对有效地破除壳聚糖在实际应用中的限制,如通过引入纳米颗粒,在完善粗糙度的同时,提供额外的光热转化效应、抗菌性能等,拓宽了实际应用范围;或者通过引入改性新型绿色材料(如碳纳米管等),借助极性-非极性相互作用完成壳聚糖聚合形成通道状皱纹,从而建立高度有序的流通通道,避免了合成聚合物制备过程中不兼容;或者优化成形过程,通过静电纺丝、定向冷冻等借助纤维负电性、冰晶成核等有效控制孔径、孔隙策略。相信随着研究的不断深入,如何在不损失生物质材料特性情况下,通过快速、低污染的方式,获得分离高效和结构扭转性、恢复性好的材料途径将会被进一步拓宽。
参考文献
[1] ASSAR M, SIMON S, SøRLAND G H, et al. A theoretical and experimental investigation of batch oil-water gravity separation[J]. Chemical Engineering Research and Design, 2023, 194: 136-150. [百度学术]
[2] HOLWEGER H J, JAMALI M, TAFRESHI H V. Centrifugal Detachment of Compound Droplets from Fibers[J]. Langmuir, 2021, 37(2): 928-938. [百度学术]
[3] LI L, XU Z, SUN W, et al. Bio-inspired membrane with adaptable wettability for smart oil/water separation[J]. Journal of Membrane Science, DOI: 10.1016/j.memsci.2019.117661. [百度学术]
[4] XIA M, GAO J, XU P, et al. Bio-inspired high-strength supramolecular fiber membrane by ice-dissolving-regeneration for achieving self-healing, self-cleaning and water purification[J]. Chemical Engineering Journal, DOI: 10.1016/j.cej.2024.150023. [百度学术]
[5] GAO X, YAN X, YAO X, et al. The Dry-style Antifogging Properties of Mosquito Compound Eyes and Artificial Analogues Prepared by Soft Lithography[J]. Advanced Materials, 2007, 19(17): 2213-2217. [百度学术]
[6] WANG Y, HE Y, YU J, et al. A freestanding dual-cross-linked membrane with robust anti-crude oil-fouling performance for highly efficient crude oil-in-water emulsion separation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, DOI: 10.1016/j.colsurfa.2022.130117. [百度学术]
[7] BAIG U, FAIZAN M, WAHEED A. A review on super-wettable porous membranes and materials based on bio-polymeric chitosan for oil-water separation[J].Advances in Colloid and Interface Science, DOI: 10.1016/j.cis.2022.102635. [百度学术]
[8] LEE J E, PARK Y K. Applications of Modified Biochar-based Materials for the Removal of Environment Pollutants: A Mini Review[J]. Sustainability, DOI: 10.3390/su12156112. [百度学术]
[9] LI Z, QIU F, YUE X, et al. Eco-friendly self-crosslinking cellulose membrane with high mechanical properties from renewable resources for oil/water emulsion separation[J]. Journal of Environmental Chemical Engineering, DOI: 10.1016/j.jece.2021.105857. [百度学术]
[10] GAO D, FENG Y, ZHANG X, et al. Cellulosic paper-based membrane for oil-water separation enabled by papermaking and in-situ gelation[J]. Cellulose, 2022, 29(7): 4057-4069. [百度学术]
[11] TEJADO A, VAN T G M V D. Why does paper get stronger as it dries?[J]. Materials Today, 2010, 13(9): 42-49. [百度学术]
[12] FENG L, LI S, LI Y, et al. Super-hydrophobic Surfaces: From Natural to Artificial[J]. Advanced Materials, 2002, 14(24): 1857-1860. [百度学术]
[13] BARTHLOTT C N A W. Characterization and Distribution of Water-repellent, Self-cleaning Plant Surfaces [J]. Annals of Botany, 1997, 79: 667-677. [百度学术]
[14] ZHANG J, LI H, MEI D, et al. Steamed bun-derived microporous carbon for oil-water separation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, DOI: 10.1016/j.colsurfa.2021.127389. [百度学术]
[15] ZHANG M, WANG X, XIONG R, et al. Robust superwetting polytetrafluoroethylene membranes with interlayer-bridged inorganic nanocoating for efficient oil/water separation[J]. Separation and Purification Technology, DOI: 10.1016/j.seppur.2023.125126. [百度学术]
[16] JURAIJ K, CHINGAKHAM C, MANAF O, et al. Polyurethane/multi-walled carbon nanotube electrospun composite membrane for oil/water separation[J]. Journal of Applied Polymer Science, DOI: 10.1002/app.52117. [百度学术]
[17] LI H, CHANG S, LI Y, et al. A soft and recyclable carbon nanotube/carbon nanofiber hybrid membrane for oil/water separation[J]. Journal of Applied Polymer Science, DOI: 10.1002/app.52133. [百度学术]
[18] SATHTHASIVAM J, YIMING W, WANG K, et al. A Novel Architecture for Carbon Nanotube Membranes towards Fast and Efficient Oil/water Separation[J]. Scientific Reports, DOI: 10.1038/s41598-018-25788-9. [百度学术]
[19] SHAN W, DU J, YANG K, et al. Superhydrophobic and superoleophilic polystyrene/carbon nanotubes foam for oil/water separation[J]. Journal of Environmental Chemical Engineering, DOI: 10.1016/j.jece.2021.106038. [百度学术]
[20] 吴俐俊, 汪 磊, 陈文政, 等. 换热器表面疏水涂层的制备及性能测试[J]. 同济大学学报(自然科学版), 2023, 51(9): 1479-1488. [百度学术]
WU L J, WANG L, CHEN W Z, et al. Preparation and performance test of hydrophobic coating on heat exchanger surface[J]. Journal of Tongji University (Natural Science Edition), 2023, 51(9): 1479-1488. [百度学术]
[21] JAVADIAN S, SADRPOOR S M. Demulsification of water in oil emulsion by surface modified SiO2 nanoparticle[J]. Journal of Petroleum Science and Engineering, DOI: 10.1016/j.petrol.2019.106547. [百度学术]
[22] WU Y, ZHAO M, GUO Z. Multifunctional superamphiphobic SiO2 coating for crude oil transportation[J]. Chemical Engineering Journal, 2018, 334: 1584-1593. [百度学术]
[23] SEEHARAJ P, PASUPONG P, DETSRI E, et al. Superhydrophobilization of SiO2 surface with two alkylsilanes for an application in oil/water separation[J]. Journal of Materials Science, 2017, 53(7): 4828-4839. [百度学术]
[24] XING W, WANG Y, MAO X, et al. Improvement strategies for oil/water separation based on electrospun SiO2 nanofibers[J]. Journal of Colloid and Interface Science, DOI: 10.1016/j.jcis.2023.09.196. [百度学术]
[25] GUNATILAKE U B, BANDARA J. Efficient removal of oil from oil contaminated water by superhydrophilic and underwater superoleophobic nano/micro structured TiO2 nanofibers coated mesh[J]. Chemosphere, 2017, 171: 134-141. [百度学术]
[26] CAO N, YANG B, BARRAS A, et al. Polyurethane sponge functionalized with superhydrophobic nanodiamond particles for efficient oil/water separation[J]. Chemical Engineering Journal, 2017, 307: 319-325. [百度学术]
[27] GONG X, BARTLETT A, KOZBIAL A, et al. A Cost‐effective Approach to Fabricate Superhydrophobic Coatings Using Hydrophilic Materials[J]. Advanced Engineering Materials, 2015, 18(4): 567-571. [百度学术]
[28] SANTAMARIA-ECHART A, UGARTE L, GARCIA-ASTRAIN C, et al. Cellulose nanocrystals reinforced environmentally-friendly waterborne polyurethane nanocomposites[J]. Carbohydr Polym, 2016, 151: 1203-1209. [百度学术]
[29] ISOGAI A. Development of completely dispersed cellulose nanofibers[J]. Proceedings of the Japan Academy, Series B, 2018, 94(4): 161-179. [百度学术]
[30] YUE X, YANG H B, HAN Z M, et al. Tough and Moldable Sustainable Cellulose-based Structural Materials via Multiscale Interface Engineering[J]. Advanced Materials, DOI: 10.1002/adma.202306451. [百度学术]
[31] BALEA A, SANCHEZ-SALVADOR J L, MONTE M C, et al. In Situ Production and Application of Cellulose Nanofibers to Improve Recycled Paper Production[J]. Molecules, DOI: 10.3390/molecules24091800. [百度学术]
[32] LARRAZA I, VADILLO J, SANTAMARIA-ECHART A, et al. The effect of the carboxylation degree on cellulose nanofibers and waterborne polyurethane/cellulose nanofiber nanocomposites properties[J]. Polymer Degradation and Stability, DOI: 10.1016/j.polymdegradstab.2020.109084. [百度学术]
[33] ISOGAI A, SAITO T, FUKUZUMI H. TEMPO-oxidized cellulose nanofibers[J]. Nanoscale, 2011, 3(1): 71-85. [百度学术]
[34] CHEN L, LIU S, GUO X, et al. Ultralight, superhydrophobic and fire-resistant nitrogen-doped graphene aerogel for oil/water separation[J]. Separation and Purification Technology, DOI: 10.1016/j.seppur.2023.125192. [百度学术]
[35] LIU Y, HAO M, CHEN Z, et al. Recent advances in the development of nanofiber-based aerogel for oil-water separation: A review[J]. Fuel, 2023, 15:354-374. [百度学术]
[36] XIN Y, QI B, WU X, et al. Different types of membrane materials for oil-water separation: Status and challenges[J]. Colloid and Interface Science Communications, DOI: 10.1016/j.colcom.2024.100772. [百度学术]
[37] 刘秀静, 王 瑾, 王一霖, 等. 超疏水纸基材料的制备及应用领域[J]. 中国造纸, 2022, 41(2): 86-93. [百度学术]
LIU X J, WANG J, WANG Y L, et al. Preparation and Application of Superhydrophobic Paper-based Materials [J]. China Pulp & Paper, 2022, 41(2): 86-93. [百度学术]
[38] XUE Q, WU W, WU J, et al. Nano-Fe3O4/Chitosan-based superhydrophobic coatings with magnetic oil-water separation and photothermal conversion properties[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, DOI: 10.1016/j.colsurfa.2024.133698. [百度学术]
[39] XING T, DONG C, HU X, et al. Cellulose membranes via a top-down approach from loofah for oil/water separation[J]. Biomass Conversion and Biorefinery, DOI: 10.1007/s13399-023-03766-0. [百度学术]
[40] YANG Y, ZHAO X, YE L. Facile construction of durable superhydrophobic cellulose paper for oil-water separation[J]. Cellulose, 2023, 30(5): 3255-3265. [百度学术]
[41] TAN Y, FANG K, CHEN W, et al. Fabrication of a superhydrophobic cotton fabric with efficient antibacterial properties and asymmetric wettability via synergistic effect of quaternized chitosan/TiO2/Ag[J]. Industrial Crops and Products, DOI: 10.1016/j.indcrop.2024.118034. [百度学术]
[42] WU X, FENG S, MAO C, et al. Superhydrophobic and superlipophilic LDH flower balls/cellulose membranes for efficient oil-water separation[J]. New Journal of Chemistry, 2023, 47(15): 7093-7100. [百度学术]
[43] FENG K, MA W, ZHOU F, et al. Antifouling amidoximated polyacrylonitrile-regenerated cellulose acetate composite nanofibrous membranes for oil/water separation: Membrane fabrication, performance and fouling mechanism[J]. Desalination, DOI: 10.1016/j.desal.2024.117411. [百度学术]
[44] ZHAO M, HUI L, GAO Y, et al. Electrospun PVDF-based cellulose stearoyl ester nanocomposites for effective separation of water-in-oil emulsions[J]. Industrial Crops and Products, DOI: 10.1016/j.indcrop.2024.118140. [百度学术]
[45] NING D, LU Z, TIAN C, et al. Hierarchical and superwettable cellulose acetate nanofibrous membranes decorated via 3D flower-like layered double hydroxides for efficient oil/water separation[J]. Separation and Purification Technology, DOI: 10.1016/j.seppur.2024.127052. [百度学术]
[46] LI S, LU W, TANG Q, et al. Preparation of superhydrophilic sodium alginate/chitosan-Ag composite membranes with antibacterial activity for effective oil-water emulsion separation[J]. Chemical Engineering Science, DOI: 10.1016/j.ces.2023.119547. [百度学术]
[47] ZHANG H, GUO Z. A superhydrophilic and robust fabric, featuring self-assembled layers of chitosan and carbon nanotubes, facilitates high-throughput oil-water separation[J]. Separation and Purification Technology, DOI: 10.1016/j.seppur.2024.127233. [百度学术]
[48] LING H, WANG L, LIN Q, et al. Antimicrobial cellulose paper tuned with chitosan fibers for high-flux oil/water separation[J]. Carbohydr Polym, DOI: 10.1016/j.carbpol.2023.120794. [百度学术]
[49] 郭 旭, 王忠善, 刘潇笛,等. 纤维素基气凝胶制备及其超疏水改性研究进展[J]. 中国造纸, 2023, 42(11): 123-132. [百度学术]
GUO X, WANG Z S, LIU X D, et al. Research Progress in the Preparation of Cellulose-based Aerogel and Its Superhydrophobic Modification [J]. China Pulp & Paper, 2023, 42(11): 123-132. [百度学术]
[50] YAN J, HUANG J, PEI F, et al. Biomimetic dendritic-networks-inspired oil-water separation fiber membrane based on TBAC and CNC/PVDF porous nanostructures[J]. Chemical Engineering Journal, DOI: 10.1016/j.cej.2024.152307. [百度学术]
[51] HUANG Y, YANG H, YU Y, et al. Bacterial cellulose biomass aerogels for oil-water separation and thermal insulation[J]. Journal of Environmental Chemical Engineering, DOI: 10.1016/j.jece.2023.110403. [百度学术]
[52] QIAO A, HUANG R, PENKOVA A, et al. Superhydrophobic, elastic and anisotropic cellulose nanofiber aerogels for highly effective oil/water separation[J]. Separation and Purification Technology, DOI: 10.1016/j.seppur.2022.121266. [百度学术]
[53] CHEN B, HU Y. Hierarchical aerogels based on cellulose nanofibers and long-chain polymers for enhancing oil-water separation efficiency[J]. Materials Today Nano, DOI: 10.1016/j.mtnano.2024.100469. [百度学术]
[54] CHEN H, GUO Y, LIU G. Conversion of chitosan and biomass fiber into recyclable superhydrophobic aerogel for efficient oil/water separation through a facile and green approach[J]. Carbohydrate Polymers, DOI: 10.1016/j.carbpol.2024.122021. [百度学术]
[55] LIU Q, YU H, ZENG F, et al. HKUST-1 modified ultrastability cellulose/chitosan composite aerogel for highly efficient removal of methylene blue[J]. Carbohydrate Polymers, DOI: 10.1016/j.carbpol.2020.117402. [百度学术]
[56] ZHANG H, LI Y, SHI R, et al. A robust salt-tolerant superoleophobic chitosan/nanofibrillated cellulose aerogel for highly efficient oil/water separation[J]. Carbohydrate Polymers, 2018, 200: 611-615. [百度学术]
[57] KE W K, GE F, SHI X L, et al. Superelastic and superflexible cellulose aerogels for thermal insulation and oil/water separation[J]. International Journal of Biological Macromolecules,DOI:10.1016/J.IJBIOMAC.2024.129245. [百度学术]
[58] HUANG J, WU J, WU J, et al. Highly Efficient Separation for Aqueous Viscous Oils Enabled by a Wood-based Cellulose Aerogel with a Superhydrophilic Protonated Coating[J]. ACS Sustainable Chemistry & Engineering, 2024, 12(19): 7457-7465. [百度学术]
[59] WANG Q, LI Y. Facile and green fabrication of porous chitosan aerogels for highly efficient oil/water separation and metal ions removal from water[J]. Journal of Environmental Chemical Engineering, DOI: 10.1016/j.jece.2023.109689. [百度学术]
[60] HUANG W, ZHANG X, YU Z, et al. Non-crosslinked systems modulate the gel behavior and structural properties of chitosan/silica composite aerogels[J]. International Journal of Biological Macromolecules, DOI: 10.1016/j.ijbiomac.2024.130630. [百度学术]
[61] MA X, ZHOU S, LI J, et al. Natural microfibrils/regenerated cellulose-based carbon aerogel for highly efficient oil/water separation[J]. Journal of Hazardous Materials, DOI: 10.1016/j.jhazmat.2023.131397. [百度学术]
[62] DING S, HAN X, ZHU L, et al. Cleanup of oils and organic solvents from contaminated water by biomass-based aerogel with adjustable compression elasticity[J]. Water Research, DOI: 10.1016/j.watres.2023.119684. [百度学术]
CPP [百度学术]