|
二维码(扫一下试试看!) |
基于压缩感知和卷积神经网络的谐波检测方法研究 |
Study on Harmonic Detection Method Based on Compressed Sensing and Convolutional Neural Network |
收稿日期:2021-07-26 |
DOI:10.11980/j.issn.0254-508X.2021.12.009 |
关键词: 造纸工业 谐波检测 压缩感知 卷积神经网络 |
Key Words:papermaking industry harmonic detection compression sensing convolutional neural network |
基金项目:国家自然科学基金(面上)项目(62073206);陕西省自然科学基础研究计划项目(2019JQ-551)。 |
|
摘要点击次数: 2904 |
全文下载次数: 1780 |
摘要:本文提出一种基于压缩感知(CS)和卷积神经网络(CNN)的谐波检测新方法。在CS理论下建立了具有压缩采样和重构功能的谐波检测框架,并利用CNN理论设计了具有免变换字典的重构网络。研究结果表明,本文所提出的方法具有可行性,可为造纸工业中的谐波检测提供了一种新手段。 |
Abstract:A new harmonic detection method based on compressed sensing (CS) and convolutional neural network (CNN) was proposed in this paper. A harmonic detection framework with compressed sampling and reconstruction function was established based on CS theory, and a reconstruction network with transform free dictionary was designed via CNN theory. The results showed that the method proposed in this paper was feasible and provided a new method for harmonic detection in papermaking industry. |
查看全文 HTML 查看/发表评论 下载PDF阅读器 |