|
二维码(扫一下试试看!) |
基于深度学习的纸病检测系统设计与研究 |
Design and Research of Deep Learning-based Paper Defect Detection System |
收稿日期:2024-02-23 |
DOI:10.11980/j.issn.0254-508X.2024.08.019 |
关键词: 纸病检测 深度学习 系统设计 架构设计 |
Key Words:paper defect detection deep learning system design architecture design |
基金项目:浙江省高等学校国内访问工程师“校企合作项目”(FG2023285);浙江省教育厅一般项目(Y202351406);嘉兴市应用性基础研究项目(2023AY11022,2024AD10063)。 |
|
摘要点击次数: 582 |
全文下载次数: 489 |
摘要:本课题设计了基于深度学习的纸病检测系统,用于提高造纸生产过程中的质量控制水平。该系统采用了“CCD+FPGA+工业控制计算机+训练计算机”的架构模式,实现了对纸张图像数据的实时采集、纸病的实时判断和纸病类型的实时识别。综合考虑分类准确率与推理速度,选择MobileNet模型算法,其分类准确率达99.5%,每秒可推理约103.1张分辨率为224×224的图像,满足现场纸病图像分类识别的实时要求。 |
Abstract:A deep learning-based paper defect detection system was designed in this paper to enhance the quality control of papermaking production. This system adopted the architecture model of “CCD + FPGA + industrial control computer + training computer”, achieving real-time collection of paper image data, real-time assessment of paper defects, and real-time identification of types of paper defects. Considering both classification accuracy and inference speed, the MobileNet model was chosen to achieve a classification accuracy of 99.5%. It could infer approximately 103.1 images per second with a resolution of 224×224, meeting the real-time requirements for on-site and recognition of pager defect image classification. |
查看全文 HTML 查看/发表评论 下载PDF阅读器 |